

# **Logarithmic & Exponential Functions P3**

Q1

Given that  $x = 4(3^{-y})$ , express y in terms of x. [3]

Q2

Solve, correct to 3 significant figures, the equation

$$e^x + e^{2x} = e^{3x}.$$
 [5]

Q3

Solve the equation

$$\ln(x+2) = 2 + \ln x,$$

giving your answer correct to 3 decimal places.

[3]

Q4

Using the substitution  $u = 3^x$ , or otherwise, solve, correct to 3 significant figures, the equation

$$3^x = 2 + 3^{-x}. [6]$$

Q5

Solve the equation  $\ln(2 + e^{-x}) = 2$ , giving your answer correct to 2 decimal places. [4]

Q6

Solve the equation  $3^{x+2} = 3^x + 3^2$ , giving your answer correct to 3 significant figures. [4]

Q7

Solve the equation

$$\ln(5-x) = \ln 5 - \ln x,$$

giving your answers correct to 3 significant figures.

[4]

Q8

Solve the equation

$$\frac{2^x + 1}{2^x - 1} = 5,$$

giving your answer correct to 3 significant figures.

[4]

Q9

The variables x and y satisfy the equation  $x^n y = C$ , where n and C are constants. When x = 1.10, y = 5.20, and when x = 3.20, y = 1.05.

(i) Find the values of n and C. [5]

(ii) Explain why the graph of ln y against ln x is a straight line. [1]

Fayzan Munawar
Associate of Royal College of Science, UK
BSc Mathematics (Imperial College London)
tutoring@learningmathonline.com WhatsApp: +1 718 200 2476

Facebook/Learning Math Online

## Q10

The variables x and y satisfy the equation  $y^3 = Ae^{2x}$ , where A is a constant. The graph of  $\ln y$  against x is a straight line.

(i) Find the gradient of this line.

[2]

(ii) Given that the line intersects the axis of  $\ln y$  at the point where  $\ln y = 0.5$ , find the value of A correct to 2 decimal places.

#### Q11

Solve the equation

$$\ln(1+x^2) = 1 + 2\ln x,$$

giving your answer correct to 3 significant figures.

[4]

#### Q12

The curve with equation

$$6e^{2x} + ke^y + e^{2y} = c$$

where k and c are constants, passes through the point P with coordinates (ln 3, ln 2).

- (i) Show that 58 + 2k = c. [2]
- (ii) Given also that the gradient of the curve at P is -6, find the values of k and c. [5]

## Q13

(i) Show that the equation

$$\log_2(x+5) = 5 - \log_2 x$$

can be written as a quadratic equation in x.

[3]

(ii) Hence solve the equation

$$\log_2(x+5) = 5 - \log_2 x.$$
 [2]

## Q14

Use logarithms to solve the equation  $5^{2x-1} = 2(3^x)$ , giving your answer correct to 3 significant figures.

[4]

### Q15

Using the substitution  $u = e^x$ , or otherwise, solve the equation

$$e^x = 1 + 6e^{-x}$$
.

giving your answer correct to 3 significant figures.

[4]

### Q16

Solve the equation

$$ln(3x + 4) = 2ln(x + 1),$$

giving your answer correct to 3 significant figures.

[4]



Fayzan Munawar Associate *of* Royal College of Science, UK BSc Mathematics (*Imperial College London*)

tutoring@learningmathonline.com WhatsApp: +1 718 200 2476

Facebook/Learning Math Online

Q17

Solve the equation ln(2x + 3) = 2 ln x + ln 3, giving your answer correct to 3 significant figures. [4]

Q18

Solve the equation

$$5^{x-1} = 5^x - 5$$
,

giving your answer correct to 3 significant figures.

[4]

Q19

Solve the equation

$$\ln(x+5) = 1 + \ln x,$$

giving your answer in terms of e.

[3]

tutoring@learningmathonline.com WhatsApp: +1 718 200 2476

Facebook/Learning Math Online

# **Answers:**

### Q1:

Use law for the logarithm of a product or quotient, or the logarithm of a power Obtain In x = In 4 -yIn 3, or equivalent

Obtain answer 
$$y = \frac{\ln \phi - \ln x}{\ln x}$$
, or equivalent

### Q3:

Use laws of logarithms and remove logarithms correctly

Obtain  $x+2=e^2x$ , or equivalent Obtain answer x=0.313

[SR: If the logarithmic work is to base 10 then only the M mark is available.]

#### Q5:

State or imply  $2 + e^{-x} = e^2$ Carry out method for finding  $\pm x$  from  $e^{\pm x} = k$ , where k > 0, following sound In or exp work Obtain  $x = -\ln(e^2 - 2)$ , or equivalent expression for xObtain answer x = -1.68

# Q7:

Use law of the logarithm of a product or quotient and remove logarithms Obtain quadratic equation  $x^2 - 5x + 5 = 0$ , or equivalent Solve 3-term quadratic obtaining 1 or 2 roots Obtain answers 1.38 and 3.62

#### Q9:

(i) EITHER: State or imply n ln.x + ln y = ln C

Substitute x- and y-values and solve for n

Obtain n = 1.50

Solve for C

Obtain C = 6.00

(ii) State that the graph of ln y against ln x has equation nln x + ln y = ln C which is linear in ln y and ln x, or has equation of the form nX + Y = ln C, where X = ln x and Y = ln y, and is thus a straight line

### 02:

State or imply  $e^x + 1 = e^{2x}$ , or  $1 + e^{-x} = e^x$ , or equivalent Solve this equation as a quadratic in  $u = e^x$ , or in  $e^x$ , obtaining one or two roots Obtain root  $\frac{1}{2}(1 + \sqrt{5})$ , or decimal in [1.61, 1.62] Use correct method for finding x from a positive root Obtain x = 0.481 and no other answer

### Q4:

State or imply at any stage that  $3^{-x} = \frac{1}{3^x}$ , or that  $3^{-x} = \frac{1}{u}$  where  $u = 3^x$ 

Convert given equation into the 3-term quadratic in u (or  $3^x$ ):  $u^2 - 2u - 1 = 0$ Solve a 3-term quadratic, obtaining one or two roots

Obtain root  $\frac{2+\sqrt{8}}{2}$  , or a simpler equivalent, or decimal value in [2.40, 2.42]

Use a correct method for finding the value of x from a positive root Obtain x = 0.802 only

#### Q6:

Use laws of indices correctly and solve a linear equation for 3x, or for 3x

Obtain 3<sup>x</sup>, or 3<sup>x</sup> in any correct form, e.g.  $3^x = \frac{3^2}{(3^2 - 1)}$ 

Use correct method for solving  $3^{\pm a} = a$  for x, where a > 0Obtain answer x = 0.107

### Q8:

Attempt to solve for  $2^x$ Obtain  $2^x = 614$ , or equivalent Use correct method for solving an equation of the form  $2^x = a$ , where a > 0Obtain answer x = 0.585

#### Q10:

(i) State or imply  $3 \ln y = \ln A + 2x$  at any stage State gradient is  $\frac{2}{3}$ , or equivalent

(ii) Substitute x = 0,  $\ln y = 0.5$  and solve for A Obtain A = 4.48



## Q11:

Use law for the logarithm of a power, a quotient, or a product correctly at least once Use  $\ln e = 1$  or  $e = \exp(1)$ Obtain a correct equation free of logarithms, e.g.  $1 + x^2 = ex^2$ Solve and obtain answer x = 0.763 only

## Q13:

- (i) Use law for the logarithm of a product or quotient Use  $log_3 32 = 5$  or  $2^5 = 32$ Obtain  $x^2 + 5x - 32 = 0$ , or horizontal equivalent
- (ii) Solve a 3-term quadratic equation Obtain answer x = 3.68 only, or exact equivalent, e.g.  $\sqrt{153} - 5$

# Q15:

Rearrange as  $e^{2x} - e^x - 6 = 0$ , or  $u^2 - u - 6 = 0$ , or equivalent Solve a 3-term quadratic for  $e^x$  or for uObtain simplified solution  $e^x = 3$  or u = 3Obtain final answer x = 1.10 and no other

#### Q17:

Use law of the logarithm of a power and a product or quotient and remove logarithms Obtain a correct equation in any form, e.g.  $\frac{2x+3}{x^2} = 3$ 

Solve 3-term quadratic obtaining at least one root Obtain final answer 1.39 only

## Q19:

State or imply 1ne=1

Apply at least one logarithm law for product or quotient correctly (or exponential equivalent)

Obtain x+5=ex or equivalent and hence  $\frac{5}{e-1}$ 

Fayzan Munawar Associate of Royal College of Science, UK BSc Mathematics (Imperial College London)

tutoring@learningmathonline.com WhatsApp: +1 718 200 2476 Facebook/Learning Math Online

### Q12:

- (i) Use at least one of  $e^{2x} = 9$ ,  $e^y = 2$  and  $e^{2y} = 4$ Obtain given result 58 + 2k = c **AG**
- (ii) Differentiate left-hand side term by term, reaching  $ae^{2x} + be^y \frac{dy}{dx} + ce^{2y} \frac{dy}{dx}$

Obtain 
$$12e^{2x} + ke^y \frac{dy}{dx} + 2e^{2y} \frac{dy}{dx}$$

Substitute (ln 3, ln 2) in an attempt involving implicit differentiation at least once, where RHS = 0

Obtain 108 - 12k - 48 = 0 or equivalent Obtain k = 5 and c = 68

Use law for the logarithm of a product, power or quotient

Obtain a correct linear equation, e.g.  $(2x-1)\ln 5 = \ln 2 + x \ln 3$ Solve a linear equation for x

Obtain answer x = 1.09

## Q16:

Use law of the logarithm of a power or quotient and remove logarithms Obtain a 3-term quadratic equation  $x^2 - x - 3 = 0$ , or equivalent Solve 3-term quadratic obtaining 1 or 2 roots Obtain answer 2.30 only

#### Q18:

Use laws of indices correctly and solve for 5<sup>x</sup> or for 5<sup>-x</sup> or for 5<sup>x-1</sup>

Obtain  $5^x$  or for  $5^{-x}$  or for  $5^{x-1}$  in any correct form, e.g.  $5^x =$ 

Use correct method for solving  $5^x = a$ , or  $5^{-x} = a$ , or  $5^{x-1} = a$ , where  $a \ge 0$ 

Obtain answer x = 1.14