

# Algebra - Series Expansion P3

Q1

(i) Simplify  $(\sqrt{1+x}) + \sqrt{1-x}(1-x)(\sqrt{1+x}) - \sqrt{1-x}$ , showing your working, and deduce that

$$\frac{1}{\sqrt{(1+x)} + \sqrt{(1-x)}} = \frac{\sqrt{(1+x)} - \sqrt{(1-x)}}{2x}.$$
 [2]

(ii) Using this result, or otherwise, obtain the expansion of

$$\frac{1}{\sqrt{(1+x)} + \sqrt{(1-x)}}$$

in ascending powers of x, up to and including the term in  $x^2$ .

[4]

Q2

Expand  $(2 + 3x)^{-2}$  in ascending powers of x, up to and including the term in  $x^2$ , simplifying the coefficients.

Q3

Expand  $(1+x)\sqrt{(1-2x)}$  in ascending powers of x, up to and including the term in  $x^2$ , simplifying the coefficients.

Q4

When  $(1 + 2x)(1 + ax)^{\frac{2}{3}}$ , where a is a constant, is expanded in ascending powers of x, the coefficient of the term in x is zero.

- (i) Find the value of a. [3]
- (ii) When a has this value, find the term in  $x^3$  in the expansion of  $(1 + 2x)(1 + ax)^{\frac{2}{3}}$ , simplifying the coefficient. [4]

Q5

Expand  $(1 + 2x)^{-3}$  in ascending powers of x, up to and including the term in  $x^2$ , simplifying the coefficients.

Q6

Expand  $\sqrt[3]{(1-6x)}$  in ascending powers of x up to and including the term in  $x^3$ , simplifying the coefficients.



Fayzan Munawar Associate *of* Royal College of Science, UK BSc Mathematics (*Imperial College London*)

tutoring@learningmathonline.com WhatsApp: +1 718 200 2476

Facebook/Learning Math Online

Q7

Expand  $\frac{16}{(2+x)^2}$  in ascending powers of x, up to and including the term in  $x^2$ , simplifying the coefficients.

Q8

- (i) Expand  $\frac{1}{\sqrt{1-4x}}$  in ascending powers of x, up to and including the term in  $x^2$ , simplifying the coefficients.
- (ii) Hence find the coefficient of  $x^2$  in the expansion of  $\frac{1+2x}{\sqrt{4-16x}}$ . [2]

Q9

Expand  $\sqrt{\left(\frac{1-x}{1+x}\right)}$  in ascending powers of x, up to and including the term in  $x^2$ , simplifying the coefficients.

Q10

Expand  $\frac{1}{\sqrt{(4+3x)}}$  in ascending powers of x, up to and including the term in  $x^2$ , simplifying the coefficients.

Q11

When  $(1 + ax)^{-2}$ , where a is a positive constant, is expanded in ascending powers of x, the coefficients of x and  $x^3$  are equal.

- (i) Find the exact value of a. [4]
- (ii) When a has this value, obtain the expansion up to and including the term in  $x^2$ , simplifying the coefficients.

## **Answers:**

#### Q1:

- (i) Simplify product and obtain (1+x) (1-x)
   Complete the proof of the given result with no errors seen
- (ii) Use correct method to obtain the first two terms of the expansion of  $\sqrt{1+x}$  or  $\sqrt{1-x}$  *EITHER*: Obtain any correct unsimplified expansion of the numerator of the RHS of the identity up to the terms in  $x^3$ Obtain final answer with constant term  $\frac{1}{2}$ Obtain term  $\frac{1}{16}x^2$  and no term in x

#### Q3:

State correct unsimplified first two terms of the expansion of  $\sqrt{(1-2x)}$ , e.g.  $1+\frac{1}{2}(-2x)$ State correct unsimplified term in  $x^2$ , e.g.  $\frac{1}{2}\cdot(\frac{1}{2}-1)\cdot(-2x)^2/2!$ Obtain sufficient terms of the product of (1+x) and the expansion up to the term in  $x^2$  of  $\sqrt{(1-2x)}$ Obtain final answer  $1-\frac{3}{2}x^2$ [The B marks are not earned by versions with symbolic binomial coefficients such as  $\begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}$ .] [SR: An attempt to rewrite  $(1+x)\sqrt{(1-2x)}$  as  $\sqrt{(1-3x^2)}$  earns M1 A1 and the subsequent expansion  $1-\frac{3}{2}x^2$  gets M1 A1.]

### Q5:

Obtain 1 - 6xState correct unsimplified  $x^2$  term. Binomial coefficients must be expanded. Obtain ...  $+24x^2$ 

#### Q7:

Obtain correct unsimplified version of x or  $x^2$  term in expansion of  $(2+x)^{-2}$  or  $(1+\frac{1}{2}x)^{-2}$ 

Correct first term 4 from correct work

Obtain –4x

Obtain  $+3x^2$ 

#### Q2:

Obtain correct unsimplified version of the 
$$x$$
 or  $x^2$  term in the expansion of  $(2+3x)^{-2}$  or  $(1+\frac{3}{2}x)^{-2}$  M1  
State correct first term  $\frac{1}{4}$  B1  
Obtain the next two terms  $-\frac{3}{4}x+\frac{27}{16}x^2$  A1+A1  
[The M mark is not earned by versions with symbolic binomial coefficients such as  $\begin{pmatrix} -2\\1 \end{pmatrix}$ .]  
[The M mark is earned if division of 1 by the expansion of  $(2+3x)^2$ , with a correct unsimplified  $x$  or  $x^2$  term, reaches a partial quotient of  $a+bx$ .]  
[Accept exact decimal equivalents of fractions.]  
[SR: Answer given as  $\frac{1}{4}(1-3x+\frac{27}{4}x^2)$  can earn B1M1A1 (if  $\frac{1}{4}$  seen but then omitted, give M1A1).]  
[SR: Solutions involving  $k(1+\frac{3}{2}x)^{-2}$ , where  $k=2$ ,  $4$  or  $\frac{1}{2}$ , can earn M1 and  $A1\sqrt{2}$  for correctly simplifying both the terms in  $x$  and  $x^2$ .]

#### Q4:

- (i) State correct first two terms of the expansion of  $(1+ax)^{\frac{2}{5}}$ , i.e.  $1+\frac{2}{3}ax$  B1 Form an expression for the coefficient of x in the expansion of  $(1+2x)(1+ax)^{\frac{2}{5}}$  and equate it to zero

  M1

  Obtain a = -3
- (ii) Obtain correct unsimplified terms in  $x^2$  and  $x^3$  in the expansion of  $(1-3x)^{\frac{2}{3}}$  or  $(1+\alpha x)^{\frac{2}{3}}$  or  $(1+\alpha x)^{\frac{2}{3}}$   $B1\sqrt{+B1}\sqrt{}$  Carry out multiplication by 1+2x obtaining two terms in  $x^3$  M1 Obtain final answer  $-\frac{10}{3}x^3$ , or equivalent A1 [Symbolic binomial coefficients, e.g.  $(\frac{1}{3})$ , are not acceptable for the B marks in (i) or (ii)]

#### ი6:

Obtain 
$$1 + \frac{1}{3}kx$$
, where  $k = \pm 6$  or  $\pm 1$   
Obtain  $1 - 2x$   
Obtain  $-4x^2$   
Obtain  $-\frac{40}{3}x^3$  or equivalent

#### Q8:

- (i) Either Obtain correct (unsimplified) version of x or  $x^2$  term from  $(1-4x)^{\frac{1}{2}}$ Obtain 1+2xObtain  $+6x^2$
- (ii) Combine both  $x^2$  terms from product of 1 + 2x and answer from part (i) Obtain 5

## Q9:

State a correct unsimplified term in x or  $x^2$  of  $(1-x)^{\frac{1}{2}}$  or  $(1+x)^{-\frac{1}{2}}$ State correct unsimplified expansion of  $(1-x)^{\frac{1}{2}}$  up to the term in  $x^2$ State correct unsimplified expansion of  $(1+x)^{-\frac{1}{2}}$  up to the term in  $x^2$ Obtain sufficient terms of the product of the expansions of  $(1-x)^{\frac{1}{2}}$  and  $(1+x)^{-\frac{1}{2}}$ Obtain final answer  $1-x+\frac{1}{2}x^2$ 

### Q11:

- (i) Obtain correct unsimplified terms in x and  $x^3$ Equate coefficients and solve for a Obtain final answer  $a = \sqrt{2}$ , or exact equivalent
- (ii) Use correct method and value of a to find the first two terms of the expansion  $(1 + \alpha x)^{-2}$ Obtain  $1 - \sqrt{2x}$ , or equivalent

  Obtain term  $\frac{3}{2}x^2$ [Symbolic coefficients, e.g. a, are not sufficient for the first B marks]

  [The f.t. is solely on the value of a.]

F

#### Q10:

Obtain a correct unsimplified version of the x or  $x^2$  term of the expansion of  $(4+3x)^{\frac{1}{2}}$  or  $(1+\frac{3}{4}x)^{\frac{1}{2}}$ State correct first term  $\frac{1}{2}$ Obtain the next two terms  $-\frac{3}{16}x + \frac{27}{256}x^2$