Fayzan Munawar Associate *of* Royal College of Science, UK BSc Mathematics (*Imperial College London*)

<u>tutoring@learningmathonline.com</u> WhatsApp: +1 718 200 2476

Facebook/Learning Math Online

Algebra - Modulus & Inequalities P3

Q1

Solve the inequality 2x > |x-1|. [4]

Q2

Find the set of values of x satisfying the inequality $|3^x - 8| < 0.5$, giving 3 significant figures in your answer. [4]

Q3

Solve the inequality |x-2| > 3|2x+1|. [4]

Q4

Solve the inequality 2 - 3x < |x - 3|. [4]

Q5

Solve the inequality |x + 3a| > 2|x - 2a|, where a is a positive constant. [4]

Q6

Solve the inequality |x-3| > 2|x+1|. [4]

Q7

Solve the inequality 2|x-3| > |3x+1|. [4]

Q8

Solve the inequality |x| < |5 + 2x|. [3]

Q9

Solve the equation $|4 - 2^x| = 10$, giving your answer correct to 3 significant figures. [3]

Q10

Find the set of values of x satisfying the inequality 3|x-1| < |2x+1|. [4]

Answers:

Q1:

EITHER: State or imply non-modular inequality $(2x)^2 > (x=1)^2$, or corresponding equation Expand and make a reasonable solution attempt at a 2- or 3-term quadratic Obtain critical value $x=\frac{1}{4}$.

State answer $x>\frac{1}{4}$ only

Q2:

EITHER: State or imply non-modular inequality $-0.5 < 3^{x} - 8 < 0.5$, or $(3^{x} - 8)^{2} < (0.5)^{2}$, or corresponding pair of linear equations or quadratic equation

Use correct method for solving an equation of the form $3^{x} = a$, where a > 0Obtain critical values 1.83 and 1.95, or exact equivalents

State correct answer 1.83 < x < 1.95

Q3:

EITHER State or imply non-modular inequality $(x-2)^2 > (3(2x+1))^2$, or corresponding quadratic equation, or pair of linear equations $(x-2)=\pm 3(2x+1)$ Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations

Obtain critical values x=-1 and $x=-\frac{1}{7}$ State answer $-1 < x < -\frac{1}{7}$

Q4:

EITHER: State or imply non-modular inequality $(2-3x)^2 < (x-3)^2$, or corresponding equation, and make a reasonable solution attempt at a 3-term quadratic M1 Obtain critical value $x=-\frac{1}{2}$ A1

Obtain $x>-\frac{1}{2}$ A1

Fully justify $x>-\frac{1}{2}$ as only answer A1

Q5:

EITHER: State or imply non-modular inequality $(x+3a)^2 > (2(x-2a))^2$, or corresponding quadratic equation, or pair of linear equations $(x+3a) = \pm 2(x-2a)$ Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations Obtain critical values $x = \frac{1}{3}a$ and x = 7aState answer $\frac{1}{3}a < x < 7a$ Q6:

EITHER: State or imply non-modular inequality $(x-3)^2 > (2(x+1))^2$, or corresponding quadratic equation, or pair of linear equations $(x-3) = \pm 2(x+1)$ Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations Obtain critical values -5 and $\frac{1}{3}$ State answer $-5 < x < \frac{1}{3}$

Q7:

EITHER: State or imply non-modular inequality $(2(x-3))^2 > (3x+1)^2$, or corresponding quadratic equation, or pair of linear equations $2(x-3) = \pm (3x+1)$ Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations Obtain critical values x = -7 and x = 1State answer -7 < x < 1 Q8:

EITHER: State or imply non-modular inequality $x^2 < (5 + 2x)^2$, or corresponding equation, or pair of linear equations $x = \pm (5 + 2x)$ Obtain critical values -5 and $-\frac{5}{3}$ only

Obtain final answer x < -5, $x > -\frac{5}{3}$

Q9:

State or imply $4-2^x = -10$ and 10 Use correct method for solving equation of form $2^x = a$ Obtain 3.81 Q10:

EITHER State or imply non-modular inequality $(3(x-1))^2 < (2x+1)^2$ or corresponding quadratic equation, or pair of linear equations $3(x-1) = \pm (2x+1)$ Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations

Obtain critical values $x = \frac{2}{5}$ and x = 4State answer $\frac{2}{5} < x < 4$