

Algebra - Partial Fractions P3

Q1

(i) Express
$$\frac{10}{(2-x)(1+x^2)}$$
 in partial fractions. [5]

(ii) Hence, given that |x| < 1, obtain the expansion of $\frac{10}{(2-x)(1+x^2)}$ in ascending powers of x, up to and including the term in x^3 , simplifying the coefficients. [5]

Q2

Let
$$f(x) = \frac{7x+4}{(2x+1)(x+1)^2}$$
.

Express f(x) in partial fractions. [5]

Q3

(i) Express
$$\frac{2-x+8x^2}{(1-x)(1+2x)(2+x)}$$
 in partial fractions. [5]

(ii) Hence obtain the expansion of $\frac{2-x+8x^2}{(1-x)(1+2x)(2+x)}$ in ascending powers of x, up to and including the term in x^2 . [5]

Q4

Let
$$f(x) \equiv \frac{x^2 + 3x + 3}{(x+1)(x+3)}$$
.

Express f(x) in partial fractions. [5]

Q5

Express
$$\frac{100}{x^2(10-x)}$$
 in partial fractions. [4]

Q6

(i) Express
$$\frac{5x+3}{(x+1)^2(3x+2)}$$
 in partial fractions. [5]

(ii) Hence obtain the expansion of $\frac{5x+3}{(x+1)^2(3x+2)}$ in ascending powers of x, up to and including the term in x^2 , simplifying the coefficients. [5]

Q7

(i) Express
$$\frac{1+x}{(1-x)(2+x^2)}$$
 in partial fractions. [5]

(ii) Hence obtain the expansion of $\frac{1+x}{(1-x)(2+x^2)}$ in ascending powers of x, up to and including the term in x^2 . [5]

Q8

Find the values of the constants A, B, C and D such that

$$\frac{2x^3 - 1}{x^2(2x - 1)} = A + \frac{B}{x} + \frac{C}{x^2} + \frac{D}{2x - 1}.$$
 [5]

Q9

(i) Express
$$\frac{4+5x-x^2}{(1-2x)(2+x)^2}$$
 in partial fractions. [5]

(ii) Hence obtain the expansion of $\frac{4+5x-x^2}{(1-2x)(2+x)^2}$ in ascending powers of x, up to and including the term in x^2 .

Q10

Let
$$f(x) = \frac{3x}{(1+x)(1+2x^2)}$$
.

(i) Express
$$f(x)$$
 in partial fractions. [5]

(ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x^3 .

Q11

(i) Express
$$\frac{5x - x^2}{(1+x)(2+x^2)}$$
 in partial fractions. [5]

(ii) Hence obtain the expansion of $\frac{5x - x^2}{(1+x)(2+x^2)}$ in ascending powers of x, up to and including the term in x^3 .

Q12

Let
$$f(x) = \frac{12 + 8x - x^2}{(2 - x)(4 + x^2)}$$
.

(i) Express
$$f(x)$$
 in the form $\frac{A}{2-x} + \frac{Bx + C}{4+x^2}$. [4]

Q13

By first expressing $\frac{4x^2 + 5x + 3}{2x^2 + 5x + 2}$ in partial fractions, show that

$$\int_0^4 \frac{4x^2 + 5x + 3}{2x^2 + 5x + 2} \, \mathrm{d}x = 8 - \ln 9.$$
 [10]

Fayzan Munawar Associate of Royal College of Science, UK BSc Mathematics ($Imperial\ College\ London$)

tutoring@learningmathonline.com WhatsApp: +1 718 200 2476 Facebook/Learning Math Online

Q14

Let
$$f(x) = \frac{4x^2 - 7x - 1}{(x+1)(2x-3)}$$
.

(i) Express
$$f(x)$$
 in partial fractions. [5]

(ii) Show that
$$\int_{2}^{6} f(x) dx = 8 - \ln(\frac{49}{3})$$
. [5]

Q15

(i) Express
$$\frac{9-7x+8x^2}{(3-x)(1+x^2)}$$
 in partial fractions. [5]

(ii) Hence obtain the expansion of $\frac{9-7x+8x^2}{(3-x)(1+x^2)}$ in ascending powers of x, up to and including the term in x^3 . [5]

Answers:

Q1:

(i) State or imply partial fractions are of the form $\frac{A}{Z-x} + \frac{Bx-C}{1+x^2}$

Use any relevant method to obtain a constant Obtain one of the values A = 2, B = 2, C = 4

Obtain a second value

Obtain the third value

(ii) Use correct method to obtain the first two terms of the expansion of $(2-x)^{-1}$ or $(1-\frac{1}{2}x)^{-1}$

$$w(1+x^2)^{-1}$$

Obtain any correct unsimplified expansion of the partial fractions up to the terms in $\epsilon^{\rm T}_{\rm c}$

e.g. $(2x+4)(1+(-1)x^2)$ (deduct A1 for each incorrect expansion)

Carry out multiplication of expansion of $(1+x^2)^{-1}$ by (2x+4)

Obtain answer $5 + \frac{5}{2}x - \frac{15}{4}x^2 - \frac{15}{8}x^3$

Q2:

State or imply $f(x) = \frac{A}{2x+1} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$

Use any relevant method to obtain a constant

Obtain one of the values A = 2, B = -1, C = 3

Obtain the remaining two values

[A correct solution starting with third term $\frac{Cx}{(x+1)^2}$ or $\frac{Cx+D}{(x+1)^2}$ is also possible.]

Q3:

(i) State or imply the form $\frac{A}{1-x} + \frac{B}{1+2x} + \frac{C}{2+x}$

Use any relevant method to determine a constant

M1

Obtain A = 1, B = 2 and C = -4

(ii) Use correct method to obtain the first two terms of the expansion of $(1-x)^{-1}$, $(1+2x)^{-1}$, $(2+x)^{-1}$, or $(1+\frac{1}{x}x)^{-1}$

Obtain complete unsimplified expansions up to x^2 of each partial fraction $A1\sqrt{+A1}\sqrt{+A1}\sqrt{+A1}$

Combine expansions and obtain answer $1-2x+\frac{17}{2}x^2$

[Binomial coefficients such as $\binom{-1}{2}$ are not sufficient for the M1. The f.t. is on A, B, C.]

Q4:

State or imply the form $A + \frac{B}{x+1} + \frac{C}{x+3}$

State or obtain A = 1

Use correct method for finding B or C

Obtain $B = \frac{1}{2}$

Obtain $C = -\frac{3}{2}$

Q5:

State or imply the form $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{10 - x}$

Use any relevant method to determine a constant

Obtain one of the values A = 1, B = 10, C = 1

Obtain the remaining two values

[The form $\frac{Dx + E}{x^2} + \frac{C}{10 - x}$ is acceptable and leads to D = 1, E = 10, C = 1]

Q6:

(i) State or imply partial fractions are of the form $\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{3x+2}$

Use any relevant method to obtain a constant M1

Obtain one of the values A = 1, B = 2, C = -3

Obtain a second value A1
Obtain the third value A1

(ii) Use correct method to obtain the first two terms of the expansion of $(x+1)^{-1}$, $(x+1)^{-2}$, $(3x+2)^{-1}$

or $(1 + \frac{3}{2}x)^{-1}$ M1

Obtain correct unsimplified expansion up to the term in x^2 of each partial fraction $A1\sqrt{+}A1\sqrt{+}A1\sqrt{-}$

Obtain answer $\frac{3}{2} - \frac{11}{4}x + \frac{29}{8}x^2$, or equivalent

(ii) Use correct method to find first two terms of the expansion of
$$(1-x)^{-1}$$
, $(2+x^2)^{-1}$ or $(1+\frac{1}{2}x^2)^{-1}$ M1

Obtain complete unsimplified expansions up to x^2 of each partial fraction e.g. $\frac{2}{3}(1+x+x^2)$ and $\frac{1}{2}(\frac{2}{3}x-\frac{1}{3})(1-\frac{1}{2}x^2)$ A1 $\sqrt{1}+4$ A1 $\sqrt{1}+4$ Carry out multiplication of $(2+x^2)^{-1}$ by $(\frac{2}{3}x-\frac{1}{3})$, or equivalent, provided $BC\neq 0$ M1

Obtain answer $\frac{1}{3}+x+\frac{3}{3}x^2$ A1

Q9:

- (i) State or imply partial fractions of the form $\frac{A}{1-2x} + \frac{B}{2+x} + \frac{C}{(2+x)^2}$ **R**1 Use any relevant method to determine a constant Obtain one of the values A = 1, B = 1, C = -2Obtain a second value A1 Obtain the third value [The form $\frac{A}{1-2x} + \frac{Dx+E}{(2+x)^2}$, where A = 1, D = 1, E = 0, is acceptable scoring B1M1A1A1A1 as above.]
- (ii) Use correct method to obtain the first two terms of the expansion of $(1-2x)^{-1}$, $(2+x)^{-1}$, $(2+x)^{-2}$, $(1+\frac{1}{2}x)^{-1}$, or $(1+\frac{1}{2}x)^{-2}$ Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction $A1\sqrt{+A1}\sqrt{+A1}\sqrt{+A1}$ Obtain answer $1 + \frac{9}{4}x + \frac{15}{4}x^2$, or equivalent

Q11:

- (i) State or imply partial fractions are of the form $\frac{A}{1+x} + \frac{Bx+C}{2+x^2}$ **B**1 Use a relevant method to determine a constant M1 Obtain one of the values A = -2, B = 1, C = 4A1 Obtain a second value A1 Obtain the third value A1
- (ii) Use correct method to obtain the first two terms of the expansion of $(1+x)^{-1}$,

Use correct method to obtain the first two terms of the expansion of
$$(1+x)^{-1}$$
, $\left(1+\frac{1}{2}x^2\right)^{-1}$ or $\left(2+x^2\right)^{-1}$ in ascending powers of x MI

Obtain correct unsimplified expansion up to the term in x^3 of each partial fraction A1 $\sqrt{+}$ A1 $\sqrt{-}$ Multiply out fully by $Bx+C$, where $BC\neq 0$ MI

Obtain final answer $\frac{5}{2}x-3x^2+\frac{7}{4}x^3$, or equivalent A1

Q8:

Divide by denominator and obtain quadratic remainder Obtain A = 1Use any relevant method to obtain B, C or D Obtain one correct answer Obtain B = 2, C = 1 and D = -3

Q10:

- (i) State or imply the form $\frac{A}{1+x} + \frac{Bx+C}{1+2x^2}$ Use any relevant method to evaluate a constant Obtain one of A = -1, B = 2, C = 1Obtain a second value Obtain the third value
- (ii) Use correct method to obtain the first two terms of the expansion of $(1+x)^{-1}$ or $(1+2x^2)^{-1}$ Obtain correct expansion of each partial fraction as far as necessary Multiply out fully by Bx + C, where $BC \triangleright 0$ Obtain answer $3x - 3x^2 - 3x^3$

Q12:

Use any relevant method to determine a constant Obtain one of the values A = 3, B = 4, C = 0Obtain a second value Obtain the third value

Fayzan Munawar Associate of Royal College of Science, UK BSc Mathematics (Imperial College London) tutoring@learningmathonline.com WhatsApp: +1 718 200 2476 Facebook/Learning Math Online

Q13:

State or imply form
$$A + \frac{B}{2x+1} + \frac{C}{x+2}$$

State or obtain A = 2

Use correct method for finding B or C

Obtain B = 1

Obtain C = -3

Obtain $2x + \frac{1}{2}\ln(2x+1) - 3\ln(x+2)$ [Deduct B1 $\sqrt[h]$ for each error or omission]

Substitute limits in expression containing a ln(2x + 1) + b ln(x + 2)

Show full and exact working to confirm that $8 + \frac{1}{2} \ln 9 - 3 \ln 6 + 3 \ln 2$, or an equivalent

expression, simplifies to given result 8 - ln 9

Q15:

(i) State or imply form
$$\frac{A}{3-x} + \frac{Bx+C}{1+x^2}$$

Use relevant method to determine a constant Obtain $A=6$
Obtain $B=-2$

Obtain C = 1

Either Use correct method to obtain first two terms of expansion

of
$$(3-x)^{-1}$$
 or $\left(1-\frac{1}{3}x\right)^{-1}$ or $\left(1+x^2\right)^{-1}$

Obtain
$$\frac{A}{3} \left(1 + \frac{1}{3}x + \frac{1}{9}x^2 + \frac{1}{27}x^3 \right)$$

Obtain $(Bx + C)(1 - x^2)$ Obtain sufficient terms of the product $(Bx + C)(1 - x^2)$, $B, C \ne 0$ and add the

Obtain final answer $3 - \frac{4}{3}x - \frac{7}{9}x^2 + \frac{56}{27}x^3$

Q14:

(i) State or imply the form
$$A + \frac{B}{x+1} + \frac{C}{2x-3}$$

State or obtain $A = 2$
Use a correct method for finding a constant Obtain $B = -2$
Obtain $C = -1$