

Facebook/Learning Math Online

Functions P1

Q1

The function f is defined by $f: x \mapsto ax + b$, for $x \in \mathbb{R}$, where a and b are constants. It is given that f(2) = 1 and f(5) = 7.

- (i) Find the values of a and b. [2]
- (ii) Solve the equation ff(x) = 0. [3]

Q2

The equation of a curve is $y = 8x - x^2$.

- (i) Express $8x x^2$ in the form $a (x + b)^2$, stating the numerical values of a and b. [3]
- (ii) Hence, or otherwise, find the coordinates of the stationary point of the curve. [2]
- (iii) Find the set of values of x for which $y \ge -20$. [3]

The function g is defined by $g: x \mapsto 8x - x^2$, for $x \ge 4$.

- (iv) State the domain and range of g^{-1} . [2]
- (v) Find an expression, in terms of x, for $g^{-1}(x)$. [3]

Q3

The functions f and g are defined as follows:

$$f: x \mapsto x^2 - 2x, \quad x \in \mathbb{R},$$

 $g: x \mapsto 2x + 3, \quad x \in \mathbb{R}.$

- (i) Find the set of values of x for which f(x) > 15.
- (ii) Find the range of f and state, with a reason, whether f has an inverse. [4]
- (iii) Show that the equation gf(x) = 0 has no real solutions. [3]
- (iv) Sketch, in a single diagram, the graphs of y = g(x) and $y = g^{-1}(x)$, making clear the relationship between the graphs. [2]

Q4

Functions f and g are defined by

$$\begin{split} & \mathbf{f}: x \mapsto 2x - 5, \quad x \in \mathbb{R}, \\ & \mathbf{g}: x \mapsto \frac{4}{2 - x}, \quad x \in \mathbb{R}, \ x \neq 2. \end{split}$$

- (i) Find the value of x for which fg(x) = 7.
- (ii) Express each of $f^{-1}(x)$ and $g^{-1}(x)$ in terms of x. [3]
- (iii) Show that the equation $f^{-1}(x) = g^{-1}(x)$ has no real roots. [3]
- (iv) Sketch, on a single diagram, the graphs of y = f(x) and $y = f^{-1}(x)$, making clear the relationship between these two graphs. [3]

[3]

[3]

The function $f: x \mapsto 5\sin^2 x + 3\cos^2 x$ is defined for the domain $0 \le x \le \pi$.

- (i) Express f(x) in the form $a + b \sin^2 x$, stating the values of a and b. [2]
- (ii) Hence find the values of x for which $f(x) = 7 \sin x$. [3]
- (iii) State the range of f. [2]

Q6

Q5

The function $f: x \mapsto 2x - a$, where a is a constant, is defined for all real x.

(i) In the case where a = 3, solve the equation ff(x) = 11. [3]

The function g: $x \mapsto x^2 - 6x$ is defined for all real x.

(ii) Find the value of a for which the equation f(x) = g(x) has exactly one real solution. [3]

The function h: $x \mapsto x^2 - 6x$ is defined for the domain $x \ge 3$.

- (iii) Express $x^2 6x$ in the form $(x p)^2 q$, where p and q are constants. [2]
- (iv) Find an expression for $h^{-1}(x)$ and state the domain of h^{-1} . [4]

Q7

A function f is defined by $f: x \mapsto 3 - 2\sin x$, for $0^{\circ} \le x \le 360^{\circ}$.

- (i) Find the range of f. [2]
- (ii) Sketch the graph of y = f(x). [2]

A function g is defined by g: $x \mapsto 3 - 2\sin x$, for $0^{\circ} \le x \le A^{\circ}$, where A is a constant.

- (iii) State the largest value of A for which g has an inverse. [1]
- (iv) When A has this value, obtain an expression, in terms of x, for $g^{-1}(x)$. [2]

Q8

A function f is defined by $f: x \mapsto (2x-3)^3 - 8$, for $2 \le x \le 4$.

- (i) Find an expression, in terms of x, for f'(x) and show that f is an increasing function. [4]
- (ii) Find an expression, in terms of x, for $f^{-1}(x)$ and find the domain of f^{-1} . [4]

Q9

Functions f and g are defined by

f:
$$x \mapsto k - x$$
 for $x \in \mathbb{R}$, where k is a constant,
g: $x \mapsto \frac{9}{x+2}$ for $x \in \mathbb{R}$, $x \neq -2$.

- (i) Find the values of k for which the equation f(x) = g(x) has two equal roots and solve the equation f(x) = g(x) in these cases. [6]
- (ii) Solve the equation fg(x) = 5 when k = 6.
- (iii) Express $g^{-1}(x)$ in terms of x. [2]

Q10

The function f is defined by $f: x \mapsto x^2 - 3x$ for $x \in \mathbb{R}$.

- (i) Find the set of values of x for which f(x) > 4. [3]
- (ii) Express f(x) in the form $(x-a)^2 b$, stating the values of a and b. [2]
- (iii) Write down the range of f. [1]
- (iv) State, with a reason, whether f has an inverse. [1]

The function g is defined by $g: x \mapsto x - 3\sqrt{x}$ for $x \ge 0$.

(v) Solve the equation g(x) = 10. [3]

Q11

The diagram shows the graph of y = f(x), where $f: x \mapsto \frac{6}{2x+3}$ for $x \ge 0$.

- (i) Find an expression, in terms of x, for f'(x) and explain how your answer shows that f is a decreasing function. [3]
- (ii) Find an expression, in terms of x, for $f^{-1}(x)$ and find the domain of f^{-1} . [4]
- (iii) Copy the diagram and, on your copy, sketch the graph of $y = f^{-1}(x)$, making clear the relationship between the graphs. [2]

The function g is defined by $g: x \mapsto \frac{1}{2}x$ for $x \ge 0$.

Q12

The function f is defined by $f: x \mapsto 2x^2 - 8x + 11$ for $x \in \mathbb{R}$.

- (i) Express f(x) in the form $a(x+b)^2 + c$, where a, b and c are constants. [3]
- (ii) State the range of f. [1]
- (iii) Explain why f does not have an inverse. [1]

The function g is defined by $g: x \mapsto 2x^2 - 8x + 11$ for $x \le A$, where A is a constant.

- (iv) State the largest value of A for which g has an inverse. [1]
- (v) When A has this value, obtain an expression, in terms of x, for $g^{-1}(x)$ and state the range of g^{-1} . [4]

Q13

The function f is such that $f(x) = (3x + 2)^3 - 5$ for $x \ge 0$.

- (i) Obtain an expression for f'(x) and hence explain why f is an increasing function. [3]
- (ii) Obtain an expression for $f^{-1}(x)$ and state the domain of f^{-1} . [4]

Q14

Functions f and g are defined by

$$f: x \mapsto 4x - 2k$$
 for $x \in \mathbb{R}$, where k is a constant,
 $g: x \mapsto \frac{9}{2-x}$ for $x \in \mathbb{R}$, $x \neq 2$.

- (i) Find the values of k for which the equation fg(x) = x has two equal roots. [4]
- (ii) Determine the roots of the equation fg(x) = x for the values of k found in part (i). [3]

Q15

The function f is defined by

$$f: x \mapsto 3x - 2 \text{ for } x \in \mathbb{R}.$$

(i) Sketch, in a single diagram, the graphs of y = f(x) and $y = f^{-1}(x)$, making clear the relationship between the two graphs.

The function g is defined by

$$g: x \mapsto 6x - x^2 \text{ for } x \in \mathbb{R}.$$

(ii) Express gf(x) in terms of x, and hence show that the maximum value of gf(x) is 9. [5]

The function h is defined by

$$h: x \mapsto 6x - x^2 \text{ for } x \ge 3.$$

- (iii) Express $6x x^2$ in the form $a (x b)^2$, where a and b are positive constants. [2]
- (iv) Express $h^{-1}(x)$ in terms of x. [3]

Q16

The function f is defined by f: $x \mapsto 2x^2 - 12x + 13$ for $0 \le x \le A$, where A is a constant.

- (i) Express f(x) in the form $a(x+b)^2 + c$, where a, b and c are constants. [3]
- (ii) State the value of A for which the graph of y = f(x) has a line of symmetry. [1]
- (iii) When A has this value, find the range of f. [2]

The function g is defined by g: $x \mapsto 2x^2 - 12x + 13$ for $x \ge 4$.

- (iv) Explain why g has an inverse.
- (v) Obtain an expression, in terms of x, for $g^{-1}(x)$. [3]

Q17

Functions f and g are defined by

$$f: x \mapsto 2x + 1, \quad x \in \mathbb{R}, \quad x > 0,$$

 $g: x \mapsto \frac{2x - 1}{x + 3}, \quad x \in \mathbb{R}, \quad x \neq -3.$

- (i) Solve the equation gf(x) = x.
- (ii) Express $f^{-1}(x)$ and $g^{-1}(x)$ in terms of x. [4]
- (iii) Show that the equation $g^{-1}(x) = x$ has no solutions.
- (iv) Sketch in a single diagram the graphs of y = f(x) and $y = f^{-1}(x)$, making clear the relationship between the graphs.

Q18

The function f is defined by $f: x \mapsto 5 - 3\sin 2x$ for $0 \le x \le \pi$.

- (i) Find the range of f. [2]
- (ii) Sketch the graph of y = f(x). [3]
- (iii) State, with a reason, whether f has an inverse. [1]

[1]

[3]

[3]

Facebook/Learning Math Online

Q19

The function f is defined by $f: x \mapsto 2x^2 - 12x + 7$ for $x \in \mathbb{R}$.

- (i) Express f(x) in the form $a(x-b)^2 c$. [3]
- (ii) State the range of f. [1]
- (iii) Find the set of values of x for which f(x) < 21. [3]

The function g is defined by $g: x \mapsto 2x + k$ for $x \in \mathbb{R}$.

(iv) Find the value of the constant k for which the equation gf(x) = 0 has two equal roots. [4]

Q20

The functions f and g are defined for $x \in \mathbb{R}$ by

$$f: x \mapsto 4x - 2x^2$$
,
 $g: x \mapsto 5x + 3$.

- (i) Find the range of f. [2]
- (ii) Find the value of the constant k for which the equation gf(x) = k has equal roots. [3]

Q21

The function $f: x \mapsto 4 - 3\sin x$ is defined for the domain $0 \le x \le 2\pi$.

- (i) Solve the equation f(x) = 2. [3]
- (ii) Sketch the graph of y = f(x). [2]
- (iii) Find the set of values of k for which the equation f(x) = k has no solution. [2]

The function $g: x \mapsto 4 - 3\sin x$ is defined for the domain $\frac{1}{2}\pi \le x \le A$.

- (iv) State the largest value of A for which g has an inverse. [1]
- (v) For this value of A, find the value of $g^{-1}(3)$. [2]

Q22

The function $f: x \mapsto 2x^2 - 8x + 14$ is defined for $x \in \mathbb{R}$.

- (i) Find the values of the constant k for which the line y + kx = 12 is a tangent to the curve y = f(x).
- (ii) Express f(x) in the form $a(x+b)^2 + c$, where a, b and c are constants. [3]
- (iii) Find the range of f. [1]

The function $g: x \mapsto 2x^2 - 8x + 14$ is defined for $x \ge A$.

- (iv) Find the smallest value of A for which g has an inverse. [1]
- (v) For this value of A, find an expression for $g^{-1}(x)$ in terms of x. [3]

Q23

Functions f and g are defined for $x \in \mathbb{R}$ by

$$f: x \mapsto 2x + 3,$$

 $g: x \mapsto x^2 - 2x.$

Express gf(x) in the form $a(x+b)^2 + c$, where a, b and c are constants. [5]

Facebook/Learning Math Online

Q24

A function f is defined by $f: x \mapsto 3 - 2\tan(\frac{1}{2}x)$ for $0 \le x < \pi$.

(ii) State the exact value of
$$f(\frac{2}{3}\pi)$$
. [1]

(iii) Sketch the graph of
$$y = f(x)$$
. [2]

(iv) Obtain an expression, in terms of x, for
$$f^{-1}(x)$$
. [3]

Q25

The function f is defined by

$$f(x) = x^2 - 4x + 7$$
 for $x > 2$.

- (i) Express f(x) in the form $(x-a)^2 + b$ and hence state the range of f. [3]
- (ii) Obtain an expression for $f^{-1}(x)$ and state the domain of f^{-1} . [3]

The function g is defined by

$$g(x) = x - 2$$
 for $x > 2$.

The function h is such that f = hg and the domain of h is x > 0.

(iii) Obtain an expression for
$$h(x)$$
. [1]

Q26

The diagram shows the function f defined for $0 \le x \le 6$ by

$$x \mapsto \frac{1}{2}x^2$$
 for $0 \le x \le 2$,
 $x \mapsto \frac{1}{2}x + 1$ for $2 < x \le 6$.

- (ii) Copy the diagram and on your copy sketch the graph of $y = f^{-1}(x)$.
- (iii) Obtain expressions to define $f^{-1}(x)$, giving the set of values of x for which each expr valid.

Q27

Functions f and g are defined for $x \in \mathbb{R}$ by

$$f: x \mapsto 2x + 1,$$

 $g: x \mapsto x^2 - 2.$

- (i) Find and simplify expressions for fg(x) and gf(x).
- (ii) Hence find the value of a for which fg(a) = gf(a). [3]
- (iii) Find the value of b ($b \neq a$) for which g(b) = b. [2]
- (iv) Find and simplify an expression for $f^{-1}g(x)$. [2]

The function h is defined by

$$h: x \mapsto x^2 - 2$$
, for $x \le 0$.

(v) Find an expression for $h^{-1}(x)$. [2]

[2]

Q28

The function f is defined by $f: x \mapsto \frac{x+3}{2x-1}, x \in \mathbb{R}, x \neq \frac{1}{2}$.

(i) Show that
$$ff(x) = x$$
. [3]

(ii) Hence, or otherwise, obtain an expression for $f^{-1}(x)$. [2]

Q29

Functions f and g are defined by

f:
$$x \mapsto 3x - 4$$
, $x \in \mathbb{R}$,
g: $x \mapsto 2(x - 1)^3 + 8$, $x > 1$.

- (i) Evaluate fg(2). [2]
- (ii) Sketch in a single diagram the graphs of y = f(x) and $y = f^{-1}(x)$, making clear the relationship between the graphs. [3]
- (iii) Obtain an expression for g'(x) and use your answer to explain why g has an inverse. [3]
- (iv) Express each of $f^{-1}(x)$ and $g^{-1}(x)$ in terms of x. [4]

Q30

Functions f and g are defined by

f:
$$x \mapsto 2x^2 - 8x + 10$$
 for $0 \le x \le 2$,
g: $x \mapsto x$ for $0 \le x \le 10$.

- (i) Express f(x) in the form $a(x+b)^2 + c$, where a, b and c are constants. [3]
- (ii) State the range of f. [1]
- (iii) State the domain of f^{-1} . [1]
- (iv) Sketch on the same diagram the graphs of y = f(x), y = g(x) and $y = f^{-1}(x)$, making clear the relationship between the graphs. [4]
- (v) Find an expression for $f^{-1}(x)$. [3]

Q31

The functions f and g are defined for $x \in \mathbb{R}$ by

$$f: x \mapsto 3x + a$$
,
 $g: x \mapsto b - 2x$,

where a and b are constants. Given that ff(2) = 10 and $g^{-1}(2) = 3$, find

(i) the values of a and b, [4]

(ii) an expression for fg(x). [2]

Fayzan Munawar
Associate of Royal College of Science, UK
BSc Mathematics (Imperial College London)
tutoring@learningmathonline.com WhatsApp: +1 718 200 2476

Facebook/Learning Math Online

Q32

The function $f: x \mapsto x^2 - 4x + k$ is defined for the domain $x \ge p$, where k and p are constants.

- (i) Express f(x) in the form $(x + a)^2 + b + k$, where a and b are constants. [2]
- (ii) State the range of f in terms of k. [1]
- (iii) State the smallest value of p for which f is one-one. [1]
- (iv) For the value of p found in part (iii), find an expression for $f^{-1}(x)$ and state the domain of f^{-1} , giving your answers in terms of k. [4]

Facebook/Learning Math Online

Answers:

Q1: (i) a=2, b=-3 (ii) 4x-9

Q2: (i) a=16, b=-4 (ii) (4,16) (iii) $-2 \le x \le 10$ (iv) $x \le 16$ $g^{-1} \ge -4$ (v) $g^{-1}(x) = \sqrt{(16-x)}$

Q3: (i) x < -3 & x > 5 (ii) $f(x) \ge -1$ (iv)

Q4:

(i)
$$fg(x) = g$$
 first, then $f = 8/(2-x) - 5 = 7$
 $\rightarrow x = 1\frac{1}{3}$

(or f(A)=7, A=6, g(x)=6, $\rightarrow x=1\frac{1}{2}$)

(ii)
$$f^1 = \frac{1}{2}(x+5)$$

Makes y the subject $y = 4+(2-x)$
 $\rightarrow g^1 = 2 - (4+x)$

(iii)
$$2-4/x = \frac{1}{2}(x+5)$$

 $\rightarrow x^2+x+8=0$
Use of b^2 -4ac \rightarrow Negative value \rightarrow No roots.

(iv)

6 (i)
$$5s^2 + 3c^2 = 5s^2 + 3(1 - s^2)$$

 $\rightarrow 3 + 2sin^2x$ $a = 3, b = 2$

- (ii) $3 + 2s^2 = 7s$ Sets to 0 and solves. Only values are $\pi/6$ and $5\pi/6$
- (iii) Minimum value = "a" = 3 Maximum value is "a + b" = 5

Range $3 \le f(x) \le 5$

 $f: x \rightarrow 2x - a$ Q6

(i)
$$ff(x) = 11$$
, $2(2x-3)-3=11$

[or backwards 2x - 3 = 11, x = 7, 2x - 3 = 7 (M1), (M1)]

$$\rightarrow x = 5$$

(ii) $2x - a = x^2 - 6x \rightarrow x^2 - 8x + a = 0$

Use of
$$b^2 - 4ac = 0$$

 $\rightarrow a = 16$ (or inspection)

(iii)
$$x^2 - 6x = (x - 3)^2 - 9$$

 $\rightarrow p = 3, q = 9$

$$(iv)y = (x-3)^2 - 9$$

(iv)
$$y = (x-3)^2 - 9$$

 $x = \pm \sqrt{(y+9)} + 3$

$$y = h^{-1}(x) = \sqrt{(x+9)} + 3$$

Domain of $h^{-1} = \{x: x \ge -9\}$

Q7: $f: x \rightarrow 3 - 2\sin x$ for $0^{\circ} \le x \le 360^{\circ}$.

(i) Range $1 \le f(x) \le 5$

g: $x \rightarrow 3 - 2\sin x$ for $0^{\circ} \le x \le A^{\circ}$

(iii) Maximum value of A = 90 or $\frac{1}{2}\pi$

(iv) $y = 3 - 2 \sin x$

$$g^{-1}(x) = \sin^{-1}\left(\frac{3-x}{2}\right)$$

Q10:

(i)
$$x^3 - 3x - 4 \rightarrow -1$$
 and 4
 $\rightarrow x < -1$ and $x > 4$

(ii) $x^2 - 3x = (x - \frac{1}{x})^2 - \frac{6}{x}$

(iii) f(x) (or y) $\geq -\frac{1}{2}$

(iv) No inverse - not 1 1. (v) Quadratic in √x.

- x = 25

Solution $\rightarrow \sqrt{x} = 5 \text{ pr } -2$

Q8

8.
$$f: x \mapsto (2x-3)^3 - 8$$

 $f'(x) = 3(2x - 3)^2 \times 2$

Since ()² is +ve, f'(x) +ve for all xTherefore an increasing function. (or t.p. at (1.5, -8) M1. Compares with y values at 2, or 4 + conclusion

(ii)
$$y = (2x-3)^3 - 8$$
,
 $2x-3 = \sqrt[3]{(y+8)}$
 $\rightarrow f^1(x) = \frac{\sqrt[3]{(x+8)} + 3}{2}$

Domain $-7 \le x \le 117$

Q9

11
$$f: x \mapsto k - x$$

 $g: x \mapsto \frac{9}{x+2}$
(i) $k-x = \frac{9}{x+2}$
 $\Rightarrow x^2 + (2-k)x + 9 - 2k = 0$
Use of $b^2 - 4ac$
 $\Rightarrow a = 4$ or -8
 $k = 4$, root is $\frac{-b}{2a} = 1$
 $k = -8$, root is -5 .

(ii)
$$fg(x) = 6 - \frac{9}{x+2}$$

Equates and solves with 5

[or $fg(x) = 5 \rightarrow g(x) = 1 \rightarrow x = 7$]

(iii)
$$y = \frac{9}{x+2} \rightarrow x = \frac{9}{y} - 2$$

 $g^{-1}(x) = \frac{9}{x} - 2 \text{ or } \frac{9-2x}{x}$

 $f''(x) = -6(2x+3)^{-2} \times 2$ Q12 $y = \frac{6}{2x + 3}$

 $\rightarrow f^{-1}(x) = \frac{1}{2} \left(\frac{6}{x} - 3 \right)$ Domain of f^{-1} : $0 \le x \le 2$ (iii)

(i)

(ii)

Q11

 $g(x) = \frac{1}{2}, \implies x = 1.$ [M1 M1 A1]

 $f(x) = 2x^2 - 8x + 11$

- (i) $f(x) = 2(x-2)^2 + 3$
- (ii) Range is ≥3

(iii)Not 1:1(2 x-values for 1 y-value) or curve is quadratic – or has a minimum value

(iv) A = 2

(v)
$$y = 2(x-2)^2 + 3$$

 $\rightarrow \frac{y-3}{2} = (x-2)^2$
 $\rightarrow x = 2 \pm \sqrt{\frac{y-3}{2}}$
 $\rightarrow g^{-j}(x) = 2 - \sqrt{\frac{x-3}{2}}$

Range of g⁻¹ ≤2

Q13:

$$x \mapsto (3x+2)^3-5$$

(i) $f'(x) = 9(3x+2)^2$ or $81x^2 + 108x + 36$. Because of ()² always +ve Therefore an increasing function.

(ii)
$$y = (3x + 2)^3 - 5$$

$$\sqrt[3]{v+5} = 3x+2$$

$$f^{-1}(x) = \frac{\sqrt[3]{x+5} - 2}{3}$$

Domain of f⁻¹ = range of f $\rightarrow x \ge 3$

Q14

$$f: x \mapsto 4x - 2k$$
, $g: x \mapsto \frac{9}{2-x}$

(i)
$$fg(x) = \frac{36}{2-x} - 2k = x$$

$$x^2 + 2kx - 2x + 36 - 4k$$

$$(2k-2)^2 = 4(36-4k)$$

$$k = 5 \text{ or } -7$$

(ii) $x^2 + 8x + 16 = 0$, $x^2 - 16x + 64 = 0$

$$x = -4 \text{ or } x = 8.$$

Q15

(ii) $gf(x) = 6(3x - 2) - (3x - 2)^2$ = $-9x^2 + 30x - 16$ d/dx = -18x + 30= 0 when x = 5/3 $\rightarrow \text{Max of } 9$

$$(gf(x) = 9 - (3x - 5)^2 \rightarrow Max 9)$$

Facebook/Learning Math Online

(iii)
$$6x - x^2 = 9 - (x - 3)^2$$

(iv)
$$y = 9 - (3 - x)^2$$

 $3 - x = \pm \sqrt{9 - y}$
 $\rightarrow h^{-1}(x) = 3 + \sqrt{(9 - x)}$

Q16:

(i)
$$2x^2 - 12x + 13 = 2(x - 3)^2 - 5$$

(ii) Symmetrical about x = 3. A = 6.

(iv) Inverse since 1:1 (4 > 3).

(v) Makes x the subject of the equation

Order of operations correct

$$\rightarrow \sqrt{\frac{x+5}{2}} + 3$$

Q17
$$f: x \mapsto 2x + 1, \ x \in \mathbb{R}, \ x > 0$$

 $g: x \mapsto \frac{2x - 1}{x + 3}, \ x \in \mathbb{R}, \ x \neq -3.$

(i)
$$gf(x) = \frac{2(2x+1)-1}{2x+1+3} = \frac{4x+1}{2x+4}$$

Equates to $x \to 2x^2 = 1$

(ii) $f^{-1}(x) = \frac{1}{2}(x-1)$ To find $g^{-1}(x)$, make x the subject Order must be correct \rightarrow g⁻¹(x) = $\frac{-1-3x}{x-2}$ or $\frac{1+3x}{2-x}$

(iii)
$$\frac{1+3x}{2-x} = x \rightarrow x^2 + x + 1 = 0$$
Looks at $b^2 - 4ac$
 \rightarrow negative \rightarrow no roots.

Q Q18

Q22

Q26

(i)
$$2 \le f(x) \le 8$$

(ii) $x \mapsto 5 - 3\sin 2x$

(ii)
$$x \mapsto 5 - 3\sin 2x$$

(ii) Range of $f \ge -11$

Q19

Q23

(iii)
$$2x^2 - 12x + 7 < 21$$

 $\rightarrow 2x^2 - 12x - 14$ or
 $2(x-3)^2 < 32$
 \rightarrow end-values of 7 or -1
 $\rightarrow -1 < x < 7$

(i) $2x^2 - 12x + 7 = 2(x-3)^2 - 11$

(iv) $gf(x) = 2(2x^2 - 12x + 7) + k = 0$ Use of $b^2 - 4ac$ $\rightarrow 24^2 - 16(14 + k)$ $\rightarrow k = 22$

 $f: x \mapsto 2x + 3$,

 $=4x^2+8x+3$

 $=4(x+1)^2-1$

 $g: x \mapsto x^2 - 2x$,

 $gf(x) = (2x+3)^2 - 2(2x+3)$

Q20:

f:
$$x \mapsto 4x - 2x^2$$
,
g: $x \mapsto 5x + 3$.

(i) Turning point at x = 1. Range is ≤ 2 .

(ii)
$$gf(x) = 5(4x - 2x^2) + 3$$

= k and use of $b^2 - 4ac$
 $\rightarrow k = 13$

(i)
$$4-3\sin x = 2 \rightarrow \sin x = \frac{2}{3}$$

 $\rightarrow x = 0.730 \text{ or } 2.41$

(ii)

(iii)
$$k < 1, k > 7$$
.

(iv)
$$A = \frac{3\pi}{2}$$

Q24:

$$x \mapsto 3 - 2\tan(\frac{1}{2}x)$$

(i) Range of $f \le 3$

(ii)
$$f(\frac{2}{3}\pi) = 3 - 2\sqrt{3}$$

(iii)

(iv)
$$y = 3 - 2\tan\left(\frac{x}{2}\right)$$

$$\rightarrow f^{-1}(x) = 2\tan^{-1}\left(\frac{3-x}{2}\right)$$

Q21

$$1 \quad f: x \mapsto 4 - 3\sin x$$

(i)
$$4-3\sin x = 2 \rightarrow \sin x = \frac{2}{3}$$

 $\rightarrow x = 0.730 \text{ or } 2.41$

(iv)
$$A = \frac{3\pi}{2}$$
.

(v) $\sin x = \frac{1}{3}$ - or using inverse $g^{-1}(3) = 2.80$

Q25

(i)
$$(x-2)^2$$

 $(x-2)^2 + 3$
 $f(x) > 3$

(ii) $x-2=(\pm)\sqrt{y-3}$

$$f^{-1}(x) = 2 + \sqrt{x-3}$$

domain is $x > 3$

(iii) $h(x) = x^2 + 3$

 $f: x \mapsto 2x^2 - 8x + 14$

(i)
$$y + kx = 12$$
, Sim Eqns.
 $\rightarrow 2x^2 - 8x + kx + 2 = 0$
Use of $b^2 - 4ac$
 $\rightarrow (k - 8)^2 = 16 \rightarrow k = 12$ or 4.

(iii) No inverse - not 1:1.

(ii)
$$2x^2 - 8x + 14 = 2(x-2)^2 + 6$$

(iii) Range of
$$f \ge 6$$
.

(iv) Smallest
$$A = 2$$

(v) Makes x the subject Order of operations correct.

$$g^{-1}(x) = \sqrt{\frac{x-6}{2}} + 2$$

(i) Range is 0 < f(x) < 4, 0 to 4

(i) Range is
$$0 < I(x) < 4$$
, 0 to 4

(ii) y = x drawn or implied Correct sketch of f

(iii)
$$(x \mapsto)\sqrt{2x}$$
 for $0 < x < 2$
 $(x \mapsto)2x - 2$ for $2 < x < 4$

Q27 (i)
$$fg(x) = 2x^2 - 3$$
, $gf(x) = 4x^2 + 4x - 1$
(ii) $2a^2 - 3 = 4a^2 + 4a - 1 \Rightarrow 2a^2 + 4a + 2 = 0$
 $(a+1)^2 = 0$

(iii) $b^2 - b - 2 = 0 \rightarrow (b+1)(b-2) = 0$ b = 2 Allow b = -1 in addition

(iv)
$$f^{-1}(x) = \frac{1}{2}(x-1)$$

 $f^{-1}g(x) = \frac{1}{2}(x^2-3)$

(v)
$$x = (\pm)\sqrt{y+2}$$

 $h^{-1}(x) = -\sqrt{x+2}$

tutoring@learningmathonline.com WhatsApp: +1 718 200 2476

Q28:

learningmathonline.com

(i)
$$f(x) = \frac{x+3}{2x-1}$$

 $ff(x) = \frac{\frac{x+3}{2x-1} + 3}{\frac{2(x+3)}{2} - 1} = \frac{7x}{7} = x$

(ii)
$$y = \frac{x+3}{2x-1}$$

 $\rightarrow 2xy - y = x+3$
 $\rightarrow x(2y-1) = y+3$
 $\rightarrow f^{-1}(x) = \frac{x+3}{2x-1}$

or since
$$ff(x) = x$$
,
 $f^{-1}(x) = f(x) = \frac{x+3}{2x-1}$ (M1, A1)

Q29 $f: x \mapsto 3x-4$

$$\rightarrow 3x - 4 \qquad g: x \mapsto 2(x - 1)^3 + 8$$

(i)
$$fg(2) = f(10) = 26$$

(iii) $g'(x) = 6(x-1)^2$ $g'(x) > \to \text{ no turning points}$ $\to g \text{ is } 1:1, g \text{ has an inverse.}$

(iv)
$$f^{-1}(x) = \frac{x+4}{3}$$

Attempt at making x
Order correct. $-8, \div 2, \sqrt[3]{}, +1$
 $g^{-1}(x) = \sqrt[3]{\frac{x-8}{2}} +1$

Q30:

(i)
$$2(x-2)^2+2$$

(ii)
$$2 \le f(x) \le 10$$
 oe

(iii) $2 \le x \le 10$

(iv)
$$f(x) \approx \text{half parabola from } (0,10) \text{ to } (2,2)$$

g(x):line through 0 at $\approx 45^{\circ}$

 $f^{-1}(x)$: reflection of their f(x) in g(x)

Everything totally correct

(v)
$$(x-2)^2 = \frac{1}{2}(y-2)$$

$$x = 2 \pm \sqrt{\frac{1}{2}(y-2)}$$

$$f^{-1}(x) = 2 - \sqrt{\frac{1}{2}(x-2)}$$

Q31

$$f: x \mapsto 3x + a, g: x \mapsto b - 2x$$

(i)
$$f^2(x) = 3(3x + a) + a$$

 $f^2(2) = 18 + 4a = 10 \rightarrow a = -2$

$$g^{-1}(x) = \frac{b-x}{2} \rightarrow \frac{b-2}{2} = s \quad b = 8$$

or $g(3) = 2 \rightarrow b - 6 = 2 \quad b = 8$

(ii)
$$fg(x) = 3(b-2x) + a$$

= 22 - 6x

Q32

(i)
$$(x-2)^2-4+k$$

(ii)
$$f(x) > k - 4$$
 or $[k - 4, \infty]$ or $(k - 4, \infty)$ oe

(iii) smallest value of p = 2

(iv)
$$x-2 = (\pm)\sqrt{y+4-k}$$

 $x = 2 + \sqrt{y+4-k}$
 $f^{-1}(x) = 2 + \sqrt{x+4-k}$
Domain is $x > k-4$ or $[k-4, \infty]$
or $(k-4, \infty)$ oe