

tutoring@learningmathonline.com WhatsApp: +1 718 200 2476 Facebook/Learning Math Online

[4]

Vectors P1

Q1

The points A, B, C and D have position vectors $3\mathbf{i} + 2\mathbf{k}$, $2\mathbf{i} - 2\mathbf{j} + 5\mathbf{k}$, $2\mathbf{j} + 7\mathbf{k}$ and $-2\mathbf{i} + 10\mathbf{j} + 7\mathbf{k}$ respectively.

- (i) Use a scalar product to show that BA and BC are perpendicular.
- (ii) Show that BC and AD are parallel and find the ratio of the length of BC to the length of AD. [4]

Q2

Relative to an origin O, the position vectors of the points A, B, C and D are given by

$$\overrightarrow{OA} = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix}, \quad \overrightarrow{OC} = \begin{pmatrix} 4 \\ 2 \\ p \end{pmatrix} \quad \text{and} \quad \overrightarrow{OD} = \begin{pmatrix} -1 \\ 0 \\ q \end{pmatrix},$$

where p and q are constants. Find

(i) the unit vector in the direction of \overrightarrow{AB} , [3]

(ii) the value of p for which angle $AOC = 90^{\circ}$, [3]

(iii) the values of q for which the length of \overrightarrow{AD} is 7 units. [4]

Q3

The diagram shows a triangular prism with a horizontal rectangular base ADFC, where CF = 12 units and DF = 6 units. The vertical ends ABC and DEF are isosceles triangles with AB = BC = 5 units. The mid-points of BE and DF are M and N respectively. The origin O is at the mid-point of AC.

Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OC, ON and OB respectively.

(i) Find the length of OB.

(iii) Evaluate $\overrightarrow{MC}.\overrightarrow{MN}$ and hence find angle CMN, giving your answer correct to the nearest degree.

[1]

Q4

The points A and B have position vectors $\mathbf{i} + 7\mathbf{j} + 2\mathbf{k}$ and $-5\mathbf{i} + 5\mathbf{j} + 6\mathbf{k}$ respectively, relative to an origin O.

- (i) Use a scalar product to calculate angle *AOB*, giving your answer in radians correct to 3 significant figures. [4]
- (ii) The point C is such that $\overrightarrow{AB} = 2\overrightarrow{BC}$. Find the unit vector in the direction of \overrightarrow{OC} .

Q5

Relative to an origin O, the position vectors of points P and Q are given by

$$\overrightarrow{OP} = \begin{pmatrix} -2\\3\\1 \end{pmatrix}$$
 and $\overrightarrow{OQ} = \begin{pmatrix} 2\\1\\q \end{pmatrix}$,

where q is a constant.

- (i) In the case where q = 3, use a scalar product to show that $\cos POQ = \frac{1}{7}$. [3]
- (ii) Find the values of q for which the length of \overrightarrow{PQ} is 6 units. [4]

tutoring@learningmathonline.com WhatsApp: +1 718 200 2476

Facebook/Learning Math Online

Q6

The diagram shows the roof of a house. The base of the roof, OABC, is rectangular and horizontal with $OA = CB = 14 \,\mathrm{m}$ and $OC = AB = 8 \,\mathrm{m}$. The top of the roof DE is 5 m above the base and $DE = 6 \,\mathrm{m}$. The sloping edges OD, CD, AE and BE are all equal in length.

Unit vectors \mathbf{i} and \mathbf{j} are parallel to OA and OC respectively and the unit vector \mathbf{k} is vertically upwards.

[4] [4]

Q7

The position vectors of points A and B are $\begin{pmatrix} -3 \\ 6 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}$ respectively, relative to an origin O.

(ii) The point C is such that
$$\overrightarrow{AC} = 3\overrightarrow{AB}$$
. Find the unit vector in the direction of \overrightarrow{OC} . [4]

Q8

Relative to an origin O, the position vectors of the points A and B are given by

$$\overrightarrow{OA} = \begin{pmatrix} 4\\1\\-2 \end{pmatrix}$$
 and $\overrightarrow{OB} = \begin{pmatrix} 3\\2\\-4 \end{pmatrix}$.

(i) Given that C is the point such that $\overrightarrow{AC} = 2\overrightarrow{AB}$, find the unit vector in the direction of \overrightarrow{OC} . [4]

The position vector of the point D is given by $\overrightarrow{OD} = \begin{pmatrix} 1 \\ 4 \\ k \end{pmatrix}$, where k is a constant, and it is given that

 $\overrightarrow{OD} = m\overrightarrow{OA} + n\overrightarrow{OB}$, where m and n are constants.

(ii) Find the values of
$$m$$
, n and k . [4]

Q9

The diagram shows a cube $\overrightarrow{OABCDEFG}$ in which the length of each side is 4 units. The unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to \overrightarrow{OA} , \overrightarrow{OC} and \overrightarrow{OD} respectively. The mid-points of OA and DG are P and Q respectively and R is the centre of the square face ABFE.

(iii) Find the perimeter of triangle
$$PQR$$
, giving your answer correct to 1 decimal place. [3]

Q10

Relative to an origin O, the position vectors of the points A and B are given by

$$\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$$
 and $\overrightarrow{OB} = 4\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$.

(i) Use a scalar product to find angle
$$AOB$$
, correct to the nearest degree. [4]

(ii) Find the unit vector in the direction of
$$\overrightarrow{AB}$$
. [3]

(iii) The point
$$C$$
 is such that $\overrightarrow{OC} = 6\mathbf{j} + p\mathbf{k}$, where p is a constant. Given that the lengths of \overrightarrow{AB} and \overrightarrow{AC} are equal, find the possible values of p .

Facebook/Learning Math Online

[2]

Q11

Relative to an origin O, the position vectors of points A and B are $2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and $3\mathbf{i} - 2\mathbf{j} + p\mathbf{k}$ respectively.

- (i) Find the value of p for which OA and OB are perpendicular.
- (ii) In the case where p = 6, use a scalar product to find angle AOB, correct to the nearest degree. [3]
- (iii) Express the vector \overrightarrow{AB} is terms of p and hence find the values of p for which the length of AB is 3.5 units.

Q12

The diagram shows a semicircular prism with a horizontal rectangular base ABCD. The vertical ends AED and BFC are semicircles of radius 6 cm. The length of the prism is 20 cm. The mid-point of AD is the origin O, the mid-point of BC is M and the mid-point of DC is N. The points E and E are the highest points of the semicircular ends of the prism. The point E lies on E such that E = 8 cm.

Unit vectors **i**, **j** and **k** are parallel to *OD*, *OM* and *OE* respectively.

- (i) Express each of the vectors \overrightarrow{PA} and \overrightarrow{PN} in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} .
- (ii) Use a scalar product to calculate angle APN. [4]

Q13

Relative to an origin O, the position vectors of the points A and B are given by

$$\overrightarrow{OA} = 2\mathbf{i} - 8\mathbf{j} + 4\mathbf{k}$$
 and $\overrightarrow{OB} = 7\mathbf{i} + 2\mathbf{j} - \mathbf{k}$.

- (i) Find the value of $\overrightarrow{OA} \cdot \overrightarrow{OB}$ and hence state whether angle AOB is acute, obtuse or a right angle. [3]
- (ii) The point X is such that $\overrightarrow{AX} = \frac{2}{5}\overrightarrow{AB}$. Find the unit vector in the direction of OX. [4]

Q14

Relative to an origin O, the position vectors of the points A, B and C are given by

$$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 3 \\ -6 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 0 \\ -6 \\ 8 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} -2 \\ 5 \\ -2 \end{pmatrix}.$$

- (i) Find angle AOB. [4]
- (ii) Find the vector which is in the same direction as \overrightarrow{AC} and has magnitude 30. [3]
- (iii) Find the value of the constant p for which $\overrightarrow{OA} + p \overrightarrow{OB}$ is perpendicular to \overrightarrow{OC} . [3]

Q15

In the diagram, $\overrightarrow{OABCDEFG}$ is a cube in which each side has length 6. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to \overrightarrow{OA} , \overrightarrow{OC} and \overrightarrow{OD} respectively. The point P is such that $\overrightarrow{AP} = \frac{1}{3}\overrightarrow{AB}$ and the point Q is the mid-point of DF.

- (i) Express each of the vectors \overrightarrow{OQ} and \overrightarrow{PQ} in terms of i, j and k. [3]
- (ii) Find the angle OQP.

[4]

tutoring@learningmathonline.com WhatsApp: +1 718 200 2476

Facebook/Learning Math Online

The diagram shows the parallelogram \overrightarrow{OABC} . Given that $\overrightarrow{OA} = \mathbf{i} + 3\mathbf{j} + 3\mathbf{k}$ and $\overrightarrow{OC} = 3\mathbf{i} - \mathbf{j} + \mathbf{k}$, find

(i) the unit vector in the direction of \overrightarrow{OB} ,

[3]

(ii) the acute angle between the diagonals of the parallelogram,

[5]

(iii) the perimeter of the parallelogram, correct to 1 decimal place.

Q17

Relative to an origin O, the position vectors of the points A and B are given by

$$\overrightarrow{OA} = \begin{pmatrix} -2\\3\\1 \end{pmatrix}$$
 and $\overrightarrow{OB} = \begin{pmatrix} 4\\1\\p \end{pmatrix}$.

(i) Find the value of p for which \overrightarrow{OA} is perpendicular to \overrightarrow{OB} .

[2]

(ii) Find the values of p for which the magnitude of \overrightarrow{AB} is 7.

[4]

Q18

Relative to an origin O, the position vectors of the points A, B and C are given by

$$\overrightarrow{OA} = \mathbf{i} - 2\mathbf{j} + 4\mathbf{k}, \quad \overrightarrow{OB} = 3\mathbf{i} + 2\mathbf{j} + 8\mathbf{k}, \quad \overrightarrow{OC} = -\mathbf{i} - 2\mathbf{j} + 10\mathbf{k}.$$

(i) Use a scalar product to find angle ABC.

- [6]
- (ii) Find the perimeter of triangle ABC, giving your answer correct to 2 decimal places.
- [2]

Q19

The diagram shows a pyramid OABCP in which the horizontal base OABC is a square of side 10 cm and the vertex P is 10 cm vertically above O. The points D, E, F, G lie on OP, AP, BP, CP respectively and DEFG is a horizontal square of side 6 cm. The height of DEFG above the base is a cm. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OD respectively.

(ii) Express the vector \overrightarrow{BG} in terms of i, j and k.

[4]

[2]

[2]

[4]

(iii) Use a scalar product to find angle GBA.

[4]

Q20

The diagram shows triangle OAB, in which the position vectors of A and B with respect to O are given by

$$\overrightarrow{OA} = 2\mathbf{i} + \mathbf{j} - 3\mathbf{k}$$
 and $\overrightarrow{OB} = -3\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}$.

C is a point on OA such that $\overrightarrow{OC} = p \overrightarrow{OA}$, where p is a constant.

- (ii) Find \overrightarrow{BC} in terms of p and vectors \mathbf{i} , \mathbf{j} and \mathbf{k} .
- (iii) Find the value of p given that BC is perpendicular to OA.

Q21

The diagram shows a prism ABCDPQRS with a horizontal square base APSD with sides of length 6 cm. The cross-section ABCD is a trapezium and is such that the vertical edges AB and DC are of lengths 5 cm and 2 cm respectively. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to AD, AP and AB respectively.

Facebook/Learning Math Online

- (i) Express each of the vectors \overrightarrow{CP} and \overrightarrow{CQ} in terms of i, j and k.
- (ii) Use a scalar product to calculate angle *PCQ*.
- Q22

Relative to the origin O, the position vectors of the points A, B and C are given by

$$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 10 \\ 0 \\ 6 \end{pmatrix}.$$

(i) Find angle ABC. [6]

The point D is such that ABCD is a parallelogram.

(ii) Find the position vector of D. [2]

Q23

In the diagram, OABCDEFG is a rectangular block in which OA = OD = 6 cm and AB = 12 cm. The unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to \overrightarrow{OA} , \overrightarrow{OC} and \overrightarrow{OD} respectively. The point P is the mid-point of DG, Q is the centre of the square face CBFG and R lies on AB such that AR = 4 cm.

- (i) Express each of the vectors \overrightarrow{PQ} and \overrightarrow{RQ} in terms of i, j and k.
- (ii) Use a scalar product to find angle RQP.

Q24

Relative to an origin O, the point A has position vector $4\mathbf{i} + 7\mathbf{j} - p\mathbf{k}$ and the point B has position vector $8\mathbf{i} - \mathbf{j} - p\mathbf{k}$, where p is a constant.

(i) Find
$$\overrightarrow{OA} \cdot \overrightarrow{OB}$$
. [2]

- (ii) Hence show that there are no real values of p for which OA and OB are perpendicular to each other.
- (iii) Find the values of p for which angle $AOB = 60^{\circ}$. [4]

Q25

Relative to an origin O, the position vectors of points A and B are given by

$$\overrightarrow{OA} = 5\mathbf{i} + \mathbf{j} + 2\mathbf{k}$$
 and $\overrightarrow{OB} = 2\mathbf{i} + 7\mathbf{j} + p\mathbf{k}$,

where p is a constant.

- (i) Find the value of p for which angle AOB is 90° .
- (ii) In the case where p = 4, find the vector which has magnitude 28 and is in the same direction as \overrightarrow{AB} .

Facebook/Learning Math Online

Q26

Relative to an origin O, the position vectors of points A and B are $3\mathbf{i} + 4\mathbf{j} - \mathbf{k}$ and $5\mathbf{i} - 2\mathbf{j} - 3\mathbf{k}$ respectively.

The point C is the mid-point of AB. The point D is such that $\overrightarrow{OD} = 2\overrightarrow{OB}$.

(ii) Find
$$\overrightarrow{DC}$$
.

Q27

Two vectors **u** and **v** are such that $\mathbf{u} = \begin{pmatrix} p^2 \\ -2 \\ 6 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} 2 \\ p-1 \\ 2p+1 \end{pmatrix}$, where p is a constant.

- (i) Find the values of p for which \mathbf{u} is perpendicular to \mathbf{v} . [3]
- (ii) For the case where p = 1, find the angle between the directions of **u** and **v**. [4]

Fayzan Munawar Associate of Royal College of Science, UK BSc Mathematics (Imperial College London)

tutoring@learningmathonline.com WhatsApp: +1 718 200 2476 Facebook/Learning Math Online

Answers:

Q2: (i)
$$\frac{1}{6}(2i - 4j + 4k)$$
 (ii) $p = 10$ (iii) $q = 5 \& q = -7$

Q6

Q5:

$$\begin{array}{l} \mathbf{I} \quad \overline{OP} = \begin{pmatrix} -2\\3\\1 \end{pmatrix} \text{ and } \overline{OQ} = \begin{pmatrix} 2\\1\\q \end{pmatrix} \\ (i) \begin{pmatrix} -2\\3\\1 \end{pmatrix} \cdot \begin{pmatrix} 2\\1\\q \end{pmatrix} \text{ with } q = 3, = -4+3+3=2 \\ = \sqrt{14} \cdot \sqrt{14} \cos\theta = 2 \quad , \quad \cos\theta = \frac{1}{2} \end{array}$$

(ii)
$$\overrightarrow{PQ} = \mathbf{q} - \mathbf{p} = \begin{pmatrix} 4 \\ -2 \\ q - 1 \end{pmatrix}$$

$$16 + 4 + (q - 1)^2 = 36$$

$$\Rightarrow q = 5 \text{ or } q = -3$$

Q8:

$$\overline{AB} = \begin{pmatrix} -1\\1\\-2 \end{pmatrix} \text{ and } \overline{AC} = \begin{pmatrix} -2\\2\\-4 \end{pmatrix}$$

$$\overline{OC} = \overline{OA} + \overline{AC} = \begin{pmatrix} 2\\3\\-6 \end{pmatrix}$$
Unit vector = \div $\begin{pmatrix} 2\\3\\-6 \end{pmatrix}$

$$m \begin{pmatrix} 4\\1\\-2 \end{pmatrix} + n \begin{pmatrix} 2\\3\\-6 \end{pmatrix} = \begin{pmatrix} 1\\4\\k \end{pmatrix}$$

(i)
$$\overrightarrow{PA} = -6\mathbf{i} - 8\mathbf{j} - 6\mathbf{k}$$

 $\overrightarrow{PN} = 6\mathbf{i} + 2\mathbf{j} - 6\mathbf{k}$

(ii)
$$\overrightarrow{PA} \cdot \overrightarrow{PN} = -36 - 16 + 36 = -16$$

 $\cos APN = \frac{-16}{\sqrt{136}\sqrt{76}}$
 $\Rightarrow APN = 99^{\circ}$

(i)
$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{OC} = 4\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$$

Unit vector = $\frac{1}{6}(4\mathbf{i} + 2\mathbf{j} + 4\mathbf{k})$

(ii)
$$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = 2\mathbf{i} - 4\mathbf{j} - 2\mathbf{i}$$

 $\overrightarrow{AC} \cdot \overrightarrow{OB} = 8 - 8 - 8 = -8$
 $|\overrightarrow{OB}| = 6$; $|\overrightarrow{AC}| = \sqrt{24}$
 $-8 = 6 \times \sqrt{24} \times \cos \theta$

(iii)
$$OA = \sqrt{19}$$
 or $OC = \sqrt{11}$
Perimeter = $2(\sqrt{19} + \sqrt{19})$
 $\rightarrow 15.4$

Q3

Q4

(i) (i + 7j + 2k).(-5i + 5j + 6k) $\rightarrow -5 + 35 + 12 = 42$ 42 =√54 √86 cosθ → angle AOB = 0.907

(iii) MC.MN = -36+16 = -20 MC.MN = $\sqrt{61}\sqrt{52}\cos\theta$ $\rightarrow \theta = 111^{\circ}$

Q7
$$\mathbf{a} = \begin{pmatrix} -3 \\ 6 \\ 3 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}$$
(i)
$$\mathbf{a}, \mathbf{b} = 3 + 12 + 12 = 27$$

$$\mathbf{a}, \mathbf{b} = \sqrt{54} \times \sqrt{21\cos\theta}$$

$$\rightarrow 6 = 36.7^{\circ} \text{ or } 0.641 \text{ radians}$$
(ii)

(ii)
Vector
$$AB = \mathbf{b} - \mathbf{a} = \begin{pmatrix} 2 \\ -4 \\ 1 \end{pmatrix}$$

Vector $OC = \begin{pmatrix} -3 \\ 6 \\ 3 \end{pmatrix} + 3 \begin{pmatrix} 2 \\ -4 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \\ 6 \end{pmatrix}$
(but vector = Vector $OC = 9$

(ii) BC = $\frac{1}{2}$ (b - a) = -3i - j + 2k

OC = OB + BC =
$$-5i + 5j + 6k - 3i$$

- $j + 2k = -8i + 4j + 8k$

Unit Vector =
$$(-8i + 4j + 8k) + 12$$

Q9
$$\frac{10 \text{ (i)} \quad \overrightarrow{PR} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \quad \overrightarrow{PQ} = \begin{pmatrix} -2 \\ 2 \\ 4 \end{pmatrix}}{|\overrightarrow{PQ}| | |\overrightarrow{PR}| | | |\overrightarrow{PR}| | | | |}$$
(ii)
$$\frac{\overrightarrow{PQ} \overrightarrow{PR} = -4 + 4 + 8 = 8}{|\overrightarrow{PQ}| = \sqrt{12}} |\overrightarrow{PR}| = \sqrt{12}$$

$$\overrightarrow{PQ.PR} = \sqrt{12} \sqrt{24} \cos QPR$$

Angle $QPR = 61.9^{\circ} \text{ or } 1.08 \text{ rad}$

(i) Vector OD = 4i + 4j + 5k

Vector OB = 14i + 8j

Magnitude= $\sqrt{(4^2+4^2+5^2)} = \sqrt{57}$ → Magnitude = 7.55m

 $OD.OB = 4 \times 14 + 4 \times 8 = 88$ OD.OB = \57.\260cos0 + Angle DOB = 43.7"

(iii)
$$\overrightarrow{QR} = \begin{pmatrix} 4 \\ 0 \\ -2 \end{pmatrix} |\overrightarrow{QR}| = \sqrt{20}$$

$$\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$$
 $\overrightarrow{OB} = 4\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$
(i) $\overrightarrow{OA} \cdot \overrightarrow{OB} = 8 - 9 - 2 = -3$
 $\overrightarrow{OA} \cdot \overrightarrow{OB} = \sqrt{14} \times \sqrt{29} \cos AOB$

(ii)
$$\overrightarrow{AB} = \mathbf{b} - \mathbf{a} = 2\mathbf{i} - 6\mathbf{j} + 3\mathbf{k}$$

Magnitude of $\overrightarrow{AB} = \sqrt{49} = 7$
 \rightarrow Unit vector = $\frac{1}{7}$ (2 \mathbf{i} - 6 \mathbf{j} + 3 \mathbf{k})

 $\rightarrow AOB = 99^{\circ}$

(iii)
$$\overrightarrow{AC} = -2\mathbf{i} + 3\mathbf{j} + (p+1)\mathbf{k}$$

 $4 + 9 + (p+1)^2 = 49$
 $\rightarrow p = 5 \text{ or } -7$

OA =
$$2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$$
, OB = $3\mathbf{i} - 2\mathbf{j} + p\mathbf{k}$
(i) $(2\mathbf{i} + \mathbf{j} + 2\mathbf{k}) \cdot (3\mathbf{i} - 2\mathbf{j} + p\mathbf{k}) = 0$
 $\rightarrow 6 - 2 + 2p = 0$
 $\rightarrow p = -2$

(ii)
$$(2\mathbf{i} + \mathbf{j} + 2\mathbf{k}) \cdot (3\mathbf{i} - 2\mathbf{j} + 6\mathbf{k})$$

 $\rightarrow 6 - 2 + 12$ allow for \pm this
 $= \sqrt{9} \times \sqrt{49} \cos \theta$
 $\rightarrow \theta = 40^{\circ}$

(iii)
$$AB = i - 3j + (p - 2)k$$

 $1^2 + 3^2 + (p - 2)^2 = 3.5^2$
 $\rightarrow p = 0.5 \text{ or } 3.5$

Q12:

(i)
$$PA = -6\mathbf{i} - 8\mathbf{j} - 6\mathbf{k}$$

 $\overrightarrow{PN} = 6\mathbf{i} + 2\mathbf{j} - 6\mathbf{k}$

(ii)
$$\overrightarrow{PA} \cdot \overrightarrow{PN} = -36 - 16 + 36 = -16$$

 $\cos APN = \frac{-16}{\sqrt{136}\sqrt{76}}$

Q13

(i) **OA.OB** =
$$14 - 16 - 4 = -6$$

This is -ve \rightarrow Obtuse angle.

(ii)
$$AB = 5i + 10j - 5k$$

 $AX = \frac{2}{5}(AB)$
 $OX = OA + AX$
 $OX = 4i - 4j + 2k$
Divides by the modulus

Unit vector = $\frac{1}{6}(4\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})$

Q14 $\overrightarrow{OA} = \begin{pmatrix} 2 \\ 3 \\ -6 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 0 \\ -6 \\ 8 \end{pmatrix}, \overrightarrow{OC} = \begin{pmatrix} -2 \\ 5 \\ -2 \end{pmatrix}$

(i) Scalar product = $-18 - 66 = |\mathbf{a}| |\mathbf{b}| \cos \theta$ $|\mathbf{a}| = 7 \text{ and } |\mathbf{b}| = 10$ $\rightarrow \text{Angle } AOB = 160.5^{\circ}$

(ii)
$$\overline{AC} = \mathbf{c} - \mathbf{a} = \begin{pmatrix} -4\\2\\4 \end{pmatrix}$$

Modulus = 6
Vector = $5 \times \begin{pmatrix} -4\\2\\4 \end{pmatrix}$ or $\begin{pmatrix} -20\\10\\20 \end{pmatrix}$

(iii) $\begin{pmatrix} 2 \\ 3-6p \\ -6+8p \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 5 \\ -2 \end{pmatrix} = 0$ $\rightarrow p = \frac{1}{2}$

Q15

(i)
$$\overrightarrow{OQ} = 3\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}$$

 $\overrightarrow{PQ} = -3\mathbf{i} + \mathbf{j} + 6\mathbf{k}$

(ii) $(3\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}) \cdot (-3\mathbf{i} + \mathbf{j} + 6\mathbf{k})$ = -9 + 3 + 36 = 30 $30 = \sqrt{54}\sqrt{46\cos\theta}$ $\theta = 53.0^{\circ}$

> Cosine rule M1 modulus M1 attempt at 3 sides M1 A1 answer.

Q16:

$$\overrightarrow{OA} = \mathbf{i} + 3\mathbf{j} + 3\mathbf{k}, \ \overrightarrow{OC} = 3\mathbf{i} - \mathbf{j} + \mathbf{k}.$$

(ii)
$$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = 2\mathbf{i} - 4\mathbf{j} - 2\mathbf{k}$$

 $\overrightarrow{AC} \cdot \overrightarrow{OB} = 8 - 8 - 8 = -8$
 $|\overrightarrow{OB}| = 6$; $|\overrightarrow{AC}| = \sqrt{24}$
 $-8 = 6 \times \sqrt{24} \times \cos \theta$
 $\theta = 105.8^{\circ} \rightarrow 74.2^{\circ}$

Q17

(i)
$$-8 + 3 + p = 0$$

 $\rightarrow p = 5$.

(ii) Vector
$$\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$$

= $6\mathbf{i} - 2\mathbf{j} + (p-1)\mathbf{k}$
 $36 + 4 + (p-1)^2 = 49$
 $\rightarrow p = 4 \text{ or } p = -2$

Q18

$$\overrightarrow{OA} = \mathbf{i} - 2\mathbf{j} + 4\mathbf{k}, \ \overrightarrow{OB} = 3\mathbf{i} + 2\mathbf{j} + 8\mathbf{k},$$

 $\overrightarrow{OC} = -\mathbf{i} - 2\mathbf{j} + 10\mathbf{k}$

(i) (
$$\pm$$
) 2i + 4j + 4k
(\pm) 4i + 4j - 2k

$$\overrightarrow{AB.CB} = 16$$

$$\overrightarrow{AB.CB} = \sqrt{36}\sqrt{36}\cos\theta$$
 $\theta = 63.6^{\circ}$

(ii) Perimeter = $6 + 6 + \sqrt{40}$ or $6+6+6\sin 31.8^{\circ} \times 2$ $\rightarrow 18.32$

Q19

(i)
$$\frac{10-a}{10} = \frac{6}{10}$$
 oe $a = 4$

(ii)
$$\overrightarrow{BG} = -10\mathbf{j} - 10\mathbf{i} + 4\mathbf{k} + 6\mathbf{j}$$

= $-10\mathbf{i} - 4\mathbf{j} + 4\mathbf{k}$

(iii)
$$\overrightarrow{BG}.\overrightarrow{BA} = 40$$

$$\cos GBA = \frac{40}{\sqrt{132}\sqrt{100}}$$

 $GBA = 69.6^{\circ}$

Q20:

(i)
$$\overrightarrow{OA.OB} = -6 + 2 + 12 = 8$$

 $\cos AOB = \frac{8}{\sqrt{14}\sqrt{29}}$
 $AOB = 66.6^{\circ}$

(ii)
$$3i - 2j + 4k + p(2i + j - 3k)$$

(iii)
$$\overrightarrow{BC} = \mathbf{i}(3+2p) + \mathbf{j}(-2+p) + \mathbf{k}(4-3p)$$

Their $\overrightarrow{BC} \cdot [2\mathbf{i} + \mathbf{j} - 3\mathbf{k}] = 0$
 $2(3+2p) + (p-2) - 3(4-3p) = 0$
 $p = 4/7 \cdot 0.571$

Q22:

(i)
$$\overrightarrow{BA} \cdot \overrightarrow{BC}$$
 or $\overrightarrow{AB} \cdot \overrightarrow{CB}$

$$\overrightarrow{BA} = \begin{pmatrix} -2\\1\\2 \end{pmatrix}, \quad \overrightarrow{BC} = \begin{pmatrix} 6\\-2\\3 \end{pmatrix}$$

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = -8$$

$$= 3 \times 7 \times \cos\theta$$

$$\rightarrow \quad \theta = 112.4^{\circ} \text{ or } 1.96 \text{ radians}$$

(ii)
$$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AD} = \overrightarrow{OA} + \overrightarrow{BC}$$

$$= \begin{pmatrix} 8 \\ 1 \\ 8 \end{pmatrix}$$

Q25:

$$\overrightarrow{OA} = 5\mathbf{i} + \mathbf{j} + 2\mathbf{k}, \overrightarrow{OB} = 2\mathbf{i} + 7\mathbf{j} + p\mathbf{k}$$

(i)
$$\overrightarrow{OA}$$
. $\overrightarrow{OB} = 10 + 7 + 2p$
= 0 $\rightarrow p = -8\frac{1}{2}$

(ii)
$$\mathbf{AB} = -3\mathbf{i} + 6\mathbf{j} + 2\mathbf{k}$$

 $\mathbf{Modulus} = \sqrt{(9+36+4)}$
 $\mathbf{Magnitude} \ 28 \rightarrow 28 \times \mathbf{unit} \ \mathbf{vector}$
 $\rightarrow -12\mathbf{i} + 24\mathbf{j} + 8\mathbf{k}$.

Q27:

(i)
$$2p^2 - 2p + 2 + 12p + 6 \rightarrow 2p^2 + 10p + 8$$

u.v = 0
 $(p+1)(p+4) = 0 \rightarrow p = -1$ or $p = -4$

(ii)
$$\mathbf{u}.\mathbf{v} = 2 + 0 + 18 = 20$$

 $\begin{vmatrix} \mathbf{u} \\ \mathbf{u} \end{vmatrix} = \sqrt{41} \text{ or } \begin{vmatrix} \mathbf{v} \\ \mathbf{v} \end{vmatrix} = \sqrt{13}$
 $20 = \sqrt{41} \times \sqrt{13} \times \cos \theta \text{ oe}$
 $\theta = 30.0^{\circ} \text{ or } 0.523 \text{ rads}$

Q21

(i)
$$\overrightarrow{CP} = -6\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}$$

 $\overrightarrow{CQ} = -6\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}$

(ii) Scalar product =
$$36 + 36 - 6$$

 $66 = |\overrightarrow{CP}| |\overrightarrow{CQ}| \cos \theta$
 $|\overrightarrow{CP}| = \sqrt{76}$, $|\overrightarrow{CQ}| = \sqrt{81}$
Angle $PCQ = 32.7^{\circ}$ (or 0.571 rad)

Q23
$$\overrightarrow{PO} = 3$$

(i)
$$\overrightarrow{PQ} = 3\mathbf{i} + 6\mathbf{j} - 3\mathbf{k}$$

 $\overrightarrow{RQ} = -3\mathbf{i} + 8\mathbf{j} + 3\mathbf{k}$

(ii)
$$\overrightarrow{PQ} \cdot \overrightarrow{RQ} = -9 + 48 - 9 = 30$$

= $\sqrt{54} \sqrt{82} \cos RQP$

$$\rightarrow RQP = 63.2^{\circ}$$

Q24 (i)
$$(4i+7j-pk).(8i-j-pk)=25+p^2$$

(ii)
$$25 + p^2 = 0 \Rightarrow$$
 no real solutions

(iii)
$$\cos 60 = \frac{OA.OB}{|OA||OB|}$$
 used

$$|OA| = \sqrt{65 + p^2}$$
 or $|OB| = \sqrt{65 + p^2}$

$$\frac{25 + p^2}{65 + p^2} = \frac{1}{2} \text{ or } \frac{his \, scalar(i)}{65 + p^2} = \frac{1}{2}$$

$$p = \pm 3.87 \text{ or } \pm \sqrt{15}$$

Q26 (i) Scalar product =
$$15-8+3$$

 $10 = |\mathbf{OA}| |\mathbf{OB}| \cos \theta$
 $|\mathbf{OA}| = \sqrt{26}$, $|\mathbf{OB}| = \sqrt{38}$
Angle $BOA = 71.4$ or 71.5
or 1.25 radians

(ii)
$$a+\frac{1}{2}(b-a)$$
 or $b+\frac{1}{2}(a-b)$ or $\frac{1}{2}(a+b)$
 $-2b + their$ c oe
 $-6i + 5j + 4k$