

tutoring@learningmathonline.com WhatsApp: +1 718 200 2476

Facebook/Learning Math Online

Binomial Theorem P1

Q1

Find the value of the coefficient of $\frac{1}{x}$ in the expansion of $\left(2x - \frac{1}{x}\right)^5$. [3]

Q2

Find the coefficient of x^3 in the expansion of

(i)
$$(1+2x)^6$$
, [3]

(ii)
$$(1-3x)(1+2x)^6$$
. [3]

Q3

Find the coefficient of x in the expansion of $\left(3x - \frac{2}{x}\right)^5$. [4]

Q4

- (i) Find the first 3 terms in the expansion of $(2-x)^6$ in ascending powers of x. [3]
- (ii) Find the value of k for which there is no term in x^2 in the expansion of $(1 + kx)(2 x)^6$. [2]

Q5

The first three terms in the expansion of $(2 + ax)^n$, in ascending powers of x, are $32 - 40x + bx^2$. Find the values of the constants n, a and b. [5]

Q6

Find the coefficient of
$$x^2$$
 in the expansion of $\left(x + \frac{2}{x}\right)^6$. [3]

Q7

- (i) Find the first three terms in the expansion of $(2 + u)^5$ in ascending powers of u. [3]
- (ii) Use the substitution $u = x + x^2$ in your answer to part (i) to find the coefficient of x^2 in the expansion of $(2 + x + x^2)^5$.

Q8

- (i) Find the first 3 terms in the expansion, in ascending powers of x, of $(2+x^2)^5$. [3]
- (ii) Hence find the coefficient of x^4 in the expansion of $(1+x^2)^2(2+x^2)^5$. [3]

Q9

Find the value of the coefficient of
$$x^2$$
 in the expansion of $\left(\frac{x}{2} + \frac{2}{x}\right)^6$. [3]

Q10

- (i) Find the first 3 terms in the expansion of $(2 + 3x)^5$ in ascending powers of x. [3]
- (ii) Hence find the value of the constant a for which there is no term in x^2 in the expansion of $(1+ax)(2+3x)^5$. [2]

tutoring@learningmathonline.com WhatsApp: +1 718 200 2476

Facebook/Learning Math Online

Q11

- (i) Find the first 3 terms in the expansion of $(2-x)^6$ in ascending powers of x. [3]
- (ii) Given that the coefficient of x^2 in the expansion of $(1 + 2x + ax^2)(2 x)^6$ is 48, find the value of the constant a.

Q12

- (i) Find, in terms of the non-zero constant k, the first 4 terms in the expansion of $(k+x)^8$ in ascending powers of x.
- (ii) Given that the coefficients of x^2 and x^3 in this expansion are equal, find the value of k. [2]

Q13

- (i) Find the first 3 terms in the expansion of $\left(2x \frac{3}{x}\right)^5$ in descending powers of x. [3]
- (ii) Hence find the coefficient of x in the expansion of $\left(1 + \frac{2}{x^2}\right) \left(2x \frac{3}{x}\right)^5$. [2]

Q14

- (i) Find the first 3 terms in the expansion of $(1 + ax)^5$ in ascending powers of x. [2]
- (ii) Given that there is no term in x in the expansion of $(1 2x)(1 + ax)^5$, find the value of the constant a.
- (iii) For this value of a, find the coefficient of x^2 in the expansion of $(1-2x)(1+ax)^5$. [3]

Q15

- (i) Find the first three terms, in descending powers of x, in the expansion of $\left(x \frac{2}{x}\right)^6$. [3]
- (ii) Find the coefficient of x^4 in the expansion of $(1+x^2)\left(x-\frac{2}{x}\right)^6$. [2]

Q16

In the expansion of $(1 + ax)^6$, where a is a constant, the coefficient of x is -30. Find the coefficient of x^3 .

Q17

- (i) Find the first 3 terms in the expansion, in ascending powers of x, of $(1 2x^2)^8$. [2]
- (ii) Find the coefficient of x^4 in the expansion of $(2-x^2)(1-2x^2)^8$. [2]

Q18

Find the term independent of x in the expansion of $\left(x - \frac{1}{x^2}\right)^9$. [3]

tutoring@learningmathonline.com WhatsApp: +1 718 200 2476

com WhatsApp: +1 718 200 2476 Facebook/Learning Math Online

Find the coefficient of x in the expansion of
$$\left(x + \frac{2}{x^2}\right)^7$$
. [3]

Q20

(i) Find the terms in
$$x^2$$
 and x^3 in the expansion of $\left(1 - \frac{3}{2}x\right)^6$. [3]

(ii) Given that there is no term in x^3 in the expansion of $(k+2x)(1-\frac{3}{2}x)^6$, find the value of the constant k.

Q21

The coefficient of x^3 in the expansion of $(a+x)^5 + (1-2x)^6$, where a is positive, is 90. Find the value of a.

Q22

Find the term independent of x in the expansion of
$$\left(2x + \frac{1}{x^2}\right)^6$$
. [3]

Q23

(i) Find the first 3 terms in the expansion of
$$(2 - y)^5$$
 in ascending powers of y. [2]

(ii) Use the result in part (i) to find the coefficient of x^2 in the expansion of $(2 - (2x - x^2))^5$. [3]

Q24

The coefficient of
$$x^2$$
 in the expansion of $\left(k + \frac{1}{3}x\right)^5$ is 30. Find the value of the constant k . [3]

learningmathonline.com

Answers

Q1: -40

Q2: (i)160 (ii) -20

Q3: $(3x-2/x)^5$ Required term has 5C2 or 5C3 = 10 Also has 33 and 22 → 1080

(i) $(2-x)^6 = 64 - 192x + 240x^2$

(ii) $(1 + kx)(2 - x)^6$ coeff of $x^2 = 240 - 192k$ $= 0 \rightarrow k = 5/4 \text{ or } 1.25$

 2^{nd} term = $n.2^{n-1}$ (ax) = -40x 3^{nd} term = $n(n-1).\frac{1}{2}.2^{n-2}.(ax)^2$

6C2 - needs factorials or 15. $= (x)^4 \times (2/x)^2$ (first 2 marks can be obtained from

Q7:

(i) $(2+u)^5 = 32 + 80u + 80u^2$

(ii) ... $80(x+x^2)+80(x+x^2)^2$ \rightarrow coeff of x^2 of 80 + 80 = 160 **Q8** (i) $(2+x^2)^5 = 2^5 + 5.2^4 x^2 + 10.2^3 x^4$ \rightarrow 32 + 80 x^2 + 80 x^4

(allow 2^5 for 32)

(ii) $(1+x^2)^2 = 1+2x^2+x^4$ Product has 3 terms in x^4

 \rightarrow 80 + 160 + 32 = 272

Q9

Term in $x^2 \left(\frac{x}{2}\right)^4 \left(\frac{2}{x}\right)^2 \times 15$ $Coeff = \frac{15}{4} \text{ or } 3.75$

Q10

(i) $(2+3x)^5 = 32 + 240x + 720x^2$

(ii) $(1+ax)(2+3x)^5$

 \rightarrow (1 × 720) + (a × 240) = 0

Q11:

(i) $(2-x)^6$

 $64 - 192x + 240x^2$

(ii) $(1+2x+ax^2)(2-x)^6$

Equates to 48 $\rightarrow a = 3$

Q12 $(x+k)^8$

(i) $k^8 + 8k^7x + 28k^6x^2 + 56k^5x^3$

(ii) $28k^6 = 56k^5$ $\rightarrow k = 2$

Q13 $\left(2x-\frac{3}{x}\right)^5$

(i) $32x^5 - 240x^3 + 720x$

(ii) $\left(1+\frac{2}{x^2}\right)(32x^5-240x^3+720x)$ Coeff of $x (1 \times 720) + (2 \times -240)$ Q14 (i) $1+5ax+10a^2x^2$

expansion only)

(ii) $\times (1-2x) \rightarrow 5ax-2x$

(iii) Coeff of x^2 is $-10a + 10a^2$ \rightarrow -4 + 1.6 = -2.4

Q15:

(i) $\left(x - \frac{2}{x}\right)^6 = x^6 - 12x^4 + 60x^2$

Coeff of $x^2 = 240 - 384 + 64a$

(ii) $\times (1+x^2) \rightarrow 60-12=48$

 $(1 + ax)^6$ Term in x = 6axEquate with $-30 \rightarrow a = -5$

Term in $x^3 = \frac{6.5.4}{3!}a^3$

 \rightarrow coefficient of -2500

017

(i) $1 + 8(-2x^2) + {}^{8}C_2(-2x^2)^2$ $1 - 16x^2 + 112x^4$

(ii) $(2-x^2) \times their (1-16x^2+112x^4)$ $(2 \times their 112) - their (-16)$

Q18

 ${}^{9}C_{6}$ or ${}^{9}C_{3}$ used

Q19:

SOI and leading to final answer

84 or 84x as final answer

(i) Term in $x^2 = {}^6C_2 \times \left(\frac{\pm 3x}{2}\right)^2 = \frac{135x^2}{4}$ Term in $x^3 = {}^6C_3 \times \left(\frac{\pm 3x}{2}\right)^3 = \frac{-540x^3}{8}$

(ii) Term in $x^3 = \frac{270x^3}{4} - \frac{135kx^3}{2}$ $\rightarrow k=1$.

Q21 (a) $ar^2 = 20$ $\frac{a}{1-r} = 3a$

Soln of equations $\rightarrow (r = \frac{2}{3}) \ a = 45$

(b) a+7d=3(a+2d) $\rightarrow 2a=d$ $S_8=4(2a+7d)=32d \text{ or } 64a$ $S_4=2(2a+3d)=8d \text{ or } 16a$

 $6C4 \times [2(x)]^4 \times \left[\frac{1}{(x^2)}\right]^2$

240

Q23:

(i) $(2-y)^5 = 32-80y+80y^2$

(ii) $(2-(2x-x^2))^5$ "y" = "2x - x²" $\rightarrow 80 + 320 = 400$

Q24

 $k^2 \times \left(\frac{1}{3(x)}\right)^2 \times 10$ (or correct factorials)

 $10 \times k^2 \times \frac{1}{9} = 30 \Rightarrow k = 3$